Order-5 hexagonal tiling

Order-5 hexagonal tiling

Poincaré disk model of the hyperbolic plane
TypeHyperbolic regular tiling
Vertex figure65
Schläfli symbol{6,5}
Wythoff symbol5 | 6 2
Coxeter diagram
Symmetry group[6,5], (*652)
DualOrder-6 pentagonal tiling
PropertiesVertex-transitive, edge-transitive, face-transitive

In geometry, the order-5 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,5}.

Related polyhedra and tiling

This tiling is topologically related as a part of sequence of regular tilings with order-5 vertices with Schläfli symbol {n,5}, and Coxeter diagram , progressing to infinity.

Spherical Hyperbolic tilings

{2,5}

{3,5}

{4,5}

{5,5}

{6,5}

{7,5}

{8,5}
...
{,5}

This tiling is topologically related as a part of sequence of regular tilings with hexagonal faces, starting with the hexagonal tiling, with Schläfli symbol {6,n}, and Coxeter diagram , progressing to infinity.

*n62 symmetry mutation of regular tilings: 6n or {6,n}
Spherical Euclidean Hyperbolic tilings

{6,2}

{6,3}

{6,4}

{6,5}

{6,6}

{6,7}

{6,8}
...
{6,∞}

References

See also

Wikimedia Commons has media related to Order-5 hexagonal tiling.

External links

This article is issued from Wikipedia - version of the Monday, November 03, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.