Triapeirogonal tiling
Triapeirogonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | (3.∞)2 |
Schläfli symbol | r{∞,3} |
Wythoff symbol | 2 | ∞ 3 |
Coxeter diagram | |
Symmetry group | [∞,3], (*∞32) |
Dual | Order-3-infinite rhombille tiling |
Properties | Vertex-transitive edge-transitive |
In geometry, the triapeirogonal tiling (or trigonal-horocyclic tiling) is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,3}.
Related polyhedra and tiling
This hyperbolic tiling is topologically related as a part of sequence of uniform quasiregular polyhedra with vertex configurations (3.n.3.n), and [n,3] Coxeter group symmetry.
*n32 orbifold symmetries of quasiregular tilings: (3.n)2
Sym. *n32 [n,3] |
Spherical | Euclid. | Compact hyperb. | Paraco. | Noncompact hyperbolic | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
*332 [3,3] Td |
*432 [4,3] Oh |
*532 [5,3] Ih |
*632 [6,3] p6m |
*732 [7,3] |
*832 [8,3]... |
*∞32 [∞,3] |
[12i,3] | [9i,3] | [6i,3] | |||
Figure |
||||||||||||
Vertex | (3.3)2 | (3.4)2 | (3.6)2 | (3.6)2 | (3.7)2 | (3.8)2 | (3.∞)2 | (3.12i)2 | (3.9i)2 | (3.6i)2 | ||
Schläfli | r{3,3} | r{4,3} | r{5,3} | r{6,3} | r{7,3} | r{8,3} | r{∞,3} | r{12i,3} | r{9i,3} | r{6i,3} | ||
Coxeter | ||||||||||||
Dual uniform figures | ||||||||||||
Dual conf. |
V(3.3)2 |
V(3.4)2 |
V(3.5)2 |
V(3.6)2 |
V(3.7)2 |
V(3.8)2 |
V(3.∞)2 |
Paracompact uniform tilings in [∞,3] family | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [∞,3], (*∞32) | [∞,3]+ (∞32) |
[1+,∞,3] (*∞33) |
[∞,3+] (3*∞) | |||||||
= |
= |
= |
= or |
= or |
= | |||||
{∞,3} | t{∞,3} | r{∞,3} | t{3,∞} | {3,∞} | rr{∞,3} | tr{∞,3} | sr{∞,3} | h{∞,3} | h2{∞,3} | s{3,∞} |
Uniform duals | ||||||||||
V∞3 | V3.∞.∞ | V(3.∞)2 | V6.6.∞ | V3∞ | V4.3.4.∞ | V4.6.∞ | V3.3.3.3.∞ | V(3.∞)3 | V3.3.3.3.3.∞ |
Paracompact hyperbolic uniform tilings in [(∞,3,3)] family
|
See also
Wikimedia Commons has media related to Uniform tiling 3-i-3-i. |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- http://bendwavy.org/klitzing/incmats/o3xinfino.htm
- Richard Klitzing, 2D, Non-Compact Tilings o3x∞o
|
This article is issued from Wikipedia - version of the Wednesday, June 03, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.