Tetraheptagonal tiling
Tetraheptagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | (4.7)2 |
Schläfli symbol | r{7,4} rr{7,7} |
Wythoff symbol | 2 | 7 4 7 7 | 2 |
Coxeter diagram | |
Symmetry group | [7,4], (*742) [7,7], (*772) |
Dual | Order-7-4 rhombille tiling |
Properties | Vertex-transitive edge-transitive |
In geometry, the tetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of r{4,7}.
Symmetry
A half symmetry [1+,4,7] = [7,7] construction exists, which can be seen as two colors of heptagons. This coloring can be called a rhombiheptaheptagonal tiling. |
The dual tiling is made of rhombic faces and has a face configuration V4.7.4.7. |
Related polyhedra and tiling
Symmetry *4n2 [n,4] |
Spherical | Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||
---|---|---|---|---|---|---|---|---|
*342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4]... |
*∞42 [∞,4] |
[ni,4] | |
Figures | ||||||||
Config. | (4.3)2 | (4.4)2 | (4.5)2 | (4.6)2 | (4.7)2 | (4.8)2 | (4.∞)2 | (4.ni)2 |
Symmetry: [7,4], (*742) | [7,4]+, (742) | [7+,4], (7*2) | [7,4,1+], (*772) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
{7,4} | t{7,4} | r{7,4} | 2t{7,4}=t{4,7} | 2r{7,4}={4,7} | rr{7,4} | tr{7,4} | sr{7,4} | s{7,4} | h{4,7} | |
Uniform duals | ||||||||||
V74 | V4.14.14 | V4.7.4.7 | V7.8.8 | V47 | V4.4.7.4 | V4.8.14 | V3.3.4.3.7 | V3.3.7.3.7 | V77 |
Symmetry: [7,7], (*772) | [7,7]+, (772) | ||||||
---|---|---|---|---|---|---|---|
= = |
= = |
= = |
= = |
= = |
= = |
= = |
= = |
{7,7} | t{7,7} |
r{7,7} | 2t{7,7}=t{7,7} | 2r{7,7}={7,7} | rr{7,7} | tr{7,7} | sr{7,7} |
Uniform duals | |||||||
V77 | V7.14.14 | V7.7.7.7 | V7.14.14 | V77 | V4.7.4.7 | V4.14.14 | V3.3.7.3.7 |
Dimensional family of quasiregular polyhedra and tilings: 7.n.7.n
Symmetry *7n2 [n,7] |
Hyperbolic... | Paracompact | Noncompact | |||||
---|---|---|---|---|---|---|---|---|
*732 [3,7] |
*742 [4,7] |
*752 [5,7] |
*762 [6,7] |
*772 [7,7] |
*872 [8,7]... |
*∞72 [∞,7] |
[iπ/λ,7] | |
Coxeter | ||||||||
Quasiregular figures configuration |
3.7.3.7 |
4.7.4.7 |
7.5.7.5 |
7.6.7.6 |
7.7.7.7 |
7.8.7.8 |
7.∞.7.∞ |
7.∞.7.∞ |
See also
Wikimedia Commons has media related to Uniform tiling 4-7-4-7. |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
|
This article is issued from Wikipedia - version of the Tuesday, February 02, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.