Tetraheptagonal tiling
| Tetraheptagonal tiling | |
|---|---|
![]() Poincaré disk model of the hyperbolic plane  | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | (4.7)2 | 
| Schläfli symbol | r{7,4} rr{7,7}  | 
| Wythoff symbol | 2 | 7 4 7 7 | 2  | 
| Coxeter diagram | |
| Symmetry group | [7,4], (*742) [7,7], (*772)  | 
| Dual | Order-7-4 rhombille tiling | 
| Properties | Vertex-transitive edge-transitive | 
In geometry, the tetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of r{4,7}.
Symmetry
![]() A half symmetry [1+,4,7] = [7,7] construction exists, which can be seen as two colors of heptagons. This coloring can be called a rhombiheptaheptagonal tiling.  | 
![]() The dual tiling is made of rhombic faces and has a face configuration V4.7.4.7.  | 
Related polyhedra and tiling
| Symmetry *4n2 [n,4]  | 
Spherical | Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||
|---|---|---|---|---|---|---|---|---|
| *342 [3,4]  | 
*442 [4,4]  | 
*542 [5,4]  | 
*642 [6,4]  | 
*742 [7,4]  | 
*842 [8,4]...  | 
*∞42 [∞,4]  | 
  [ni,4]  | |
| Figures | ![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
|
| Config. | (4.3)2 | (4.4)2 | (4.5)2 | (4.6)2 | (4.7)2 | (4.8)2 | (4.∞)2 | (4.ni)2 | 
| Symmetry: [7,4], (*742) | [7,4]+, (742) | [7+,4], (7*2) | [7,4,1+], (*772) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | |
| {7,4} | t{7,4} | r{7,4} | 2t{7,4}=t{4,7} | 2r{7,4}={4,7} | rr{7,4} | tr{7,4} | sr{7,4} | s{7,4} | h{4,7} | |
| Uniform duals | ||||||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | |||
| V74 | V4.14.14 | V4.7.4.7 | V7.8.8 | V47 | V4.4.7.4 | V4.8.14 | V3.3.4.3.7 | V3.3.7.3.7 | V77 | |
| Symmetry: [7,7], (*772) | [7,7]+, (772) | ||||||
|---|---|---|---|---|---|---|---|
=  | 
=  | 
=  | 
=  | 
=  | 
=  | 
=  | 
=  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
| {7,7} | t{7,7} | 
r{7,7} | 2t{7,7}=t{7,7} | 2r{7,7}={7,7} | rr{7,7} | tr{7,7} | sr{7,7} | 
| Uniform duals | |||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
|
| V77 | V7.14.14 | V7.7.7.7 | V7.14.14 | V77 | V4.7.4.7 | V4.14.14 | V3.3.7.3.7 | 
Dimensional family of quasiregular polyhedra and tilings: 7.n.7.n 
| Symmetry *7n2 [n,7]  | 
Hyperbolic... | Paracompact | Noncompact | |||||
|---|---|---|---|---|---|---|---|---|
| *732 [3,7]  | 
*742 [4,7]  | 
*752 [5,7]  | 
*762 [6,7]  | 
*772 [7,7]  | 
*872 [8,7]...  | 
*∞72 [∞,7]  | 
  [iπ/λ,7]  | |
| Coxeter | ||||||||
| Quasiregular figures configuration  | 
![]() 3.7.3.7  | 
![]() 4.7.4.7  | 
![]() 7.5.7.5  | 
![]() 7.6.7.6  | 
![]() 7.7.7.7  | 
![]() 7.8.7.8  | 
![]() 7.∞.7.∞  | 
  7.∞.7.∞  | 
See also
| Wikimedia Commons has media related to Uniform tiling 4-7-4-7. | 
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
 - "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
 
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
 - Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
 - Hyperbolic and Spherical Tiling Gallery
 - KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
 - Hyperbolic Planar Tessellations, Don Hatch
 
  | ||||||||||||||||||||||||||||||||||||||
This article is issued from Wikipedia - version of the Tuesday, February 02, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.




































