Tetraheptagonal tiling

Tetraheptagonal tiling

Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration(4.7)2
Schläfli symbolr{7,4}
rr{7,7}
Wythoff symbol2 | 7 4
7 7 | 2
Coxeter diagram
Symmetry group[7,4], (*742)
[7,7], (*772)
DualOrder-7-4 rhombille tiling
PropertiesVertex-transitive edge-transitive

In geometry, the tetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of r{4,7}.

Symmetry


A half symmetry [1+,4,7] = [7,7] construction exists, which can be seen as two colors of heptagons. This coloring can be called a rhombiheptaheptagonal tiling.

The dual tiling is made of rhombic faces and has a face configuration V4.7.4.7.

Related polyhedra and tiling

*n42 symmetry mutations of quasiregular tilings: (4.n)2
Symmetry
*4n2
[n,4]
Spherical Euclidean Compact hyperbolic Paracompact Noncompact
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
 
[ni,4]
Figures
Config. (4.3)2 (4.4)2 (4.5)2 (4.6)2 (4.7)2 (4.8)2 (4.)2 (4.ni)2
Uniform heptagonal/square tilings
Symmetry: [7,4], (*742) [7,4]+, (742) [7+,4], (7*2) [7,4,1+], (*772)
{7,4} t{7,4} r{7,4} 2t{7,4}=t{4,7} 2r{7,4}={4,7} rr{7,4} tr{7,4} sr{7,4} s{7,4} h{4,7}
Uniform duals
V74 V4.14.14 V4.7.4.7 V7.8.8 V47 V4.4.7.4 V4.8.14 V3.3.4.3.7 V3.3.7.3.7 V77
Uniform heptaheptagonal tilings
Symmetry: [7,7], (*772) [7,7]+, (772)
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
{7,7} t{7,7}
r{7,7} 2t{7,7}=t{7,7} 2r{7,7}={7,7} rr{7,7} tr{7,7} sr{7,7}
Uniform duals
V77 V7.14.14 V7.7.7.7 V7.14.14 V77 V4.7.4.7 V4.14.14 V3.3.7.3.7

See also

Wikimedia Commons has media related to Uniform tiling 4-7-4-7.

References

External links

This article is issued from Wikipedia - version of the Tuesday, February 02, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.