Snub pentapentagonal tiling
Snub pentapentagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 3.3.5.3.5 |
Schläfli symbol | s{5,4} sr{5,5} |
Wythoff symbol | | 5 5 2 |
Coxeter diagram | |
Symmetry group | [5+,4], (5*2) [5,5]+, (552) |
Dual | Order-5-5 floret pentagonal tiling |
Properties | Vertex-transitive |
In geometry, the snub pentapentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of sr{5,5}, constructed from two regular pentagons and three equilateral triangles around every vertex.
Images
Drawn in chiral pairs, with edges missing between black triangles:
Symmetry
A double symmetry coloring can be constructed from [5,4] symmetry with only one color pentagon. It has Schläfli symbol s{5,4}, and Coxeter diagram .
Related tilings
Symmetry: [5,5], (*552) | [5,5]+, (552) | ||||||
---|---|---|---|---|---|---|---|
= |
= |
= |
= |
= |
= |
= |
= |
{5,5} | t{5,5} |
r{5,5} | 2t{5,5}=t{5,5} | 2r{5,5}={5,5} | rr{5,5} | tr{5,5} | sr{5,5} |
Uniform duals | |||||||
V5.5.5.5.5 | V5.10.10 | V5.5.5.5 | V5.10.10 | V5.5.5.5.5 | V4.5.4.5 | V4.10.10 | V3.3.5.3.5 |
Symmetry: [5,4], (*542) | [5,4]+, (542) | [5+,4], (5*2) | [5,4,1+], (*552) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
{5,4} | t{5,4} | r{5,4} | 2t{5,4}=t{4,5} | 2r{5,4}={4,5} | rr{5,4} | tr{5,4} | sr{5,4} | s{5,4} | h{4,5} | |
Uniform duals | ||||||||||
V54 | V4.10.10 | V4.5.4.5 | V5.8.8 | V45 | V4.4.5.4 | V4.8.10 | V3.3.4.3.5 | V3.3.5.3.5 | V55 |
Symmetry 4n2 |
Spherical | Euclidean | Compact hyperbolic | Paracompact | ||||
---|---|---|---|---|---|---|---|---|
222 | 322 | 442 | 552 | 662 | 772 | 882 | ∞∞2 | |
Snub figures |
||||||||
Config. | 3.3.2.3.2 | 3.3.3.3.3 | 3.3.4.3.4 | 3.3.5.3.5 | 3.3.6.3.6 | 3.3.7.3.7 | 3.3.8.3.8 | 3.3.∞.3.∞ |
Gyro figures |
||||||||
Config. | V3.3.2.3.2 | V3.3.3.3.3 | V3.3.4.3.4 | V3.3.5.3.5 | V3.3.6.3.6 | V3.3.7.3.7 | V3.3.8.3.8 | V3.3.∞.3.∞ |
See also
Wikimedia Commons has media related to Uniform tiling 3-3-5-3-5. |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
|
This article is issued from Wikipedia - version of the Wednesday, May 13, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.