Truncated tetrapentagonal tiling
| Truncated tetrapentagonal tiling | |
|---|---|
![]() Poincaré disk model of the hyperbolic plane  | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | 4.8.10 | 
| Schläfli symbol | tr{5,4} or ![]()  | 
| Wythoff symbol | 2 5 4 | | 
| Coxeter diagram | |
| Symmetry group | [5,4], (*542) | 
| Dual | Order-4-5 kisrhombille tiling | 
| Properties | Vertex-transitive | 
In geometry, the truncated tetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1,2{4,5} or tr{4,5}.
Symmetry

Truncated tetrapentagonal tiling with mirror lines. 




There are four small index subgroup constructed from [5,4] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.
A radical subgroup is constructed [5*,4], index 10, as [5+,4], (5*2) with gyration points removed, becoming orbifold (*22222), and its direct subgroup [5*,4]+, index 20, becomes orbifold (22222).
| Small index subgroups of [5,4] | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Index | 1 | 2 | 10 | ||||||||
| Diagram | ![]()  | 
![]()  | 
![]()  | 
![]()  | |||||||
| Coxeter (orbifold)  | 
[5,4] =  (*542)  | 
[5,4,1+] =  (*552)  | 
[5+,4] =  (5*2)  | 
[5*,4] =  (*22222)  | |||||||
| Direct subgroups | |||||||||||
| Index | 2 | 4 | 20 | ||||||||
| Diagram | ![]()  | 
![]()  | 
![]()  | ||||||||
| Coxeter (orbifold)  | 
[5,4]+ =  (542)  | 
[5+,4]+ =  (552)  | 
[5*,4]+ =  (22222)  | ||||||||
Related polyhedra and tiling
| *n42 symmetry mutation of omnitruncated tilings: 4.8.2n | ||||||||
|---|---|---|---|---|---|---|---|---|
| Symmetry *n42 [n,4]  | 
Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||
| *242 [2,4]  | 
*342 [3,4]  | 
*442 [4,4]  | 
*542 [5,4]  | 
*642 [6,4]  | 
*742 [7,4]  | 
*842 [8,4]...  | 
*∞42 [∞,4]  | |
| Omnitruncated figure  | 
![]() 4.8.4  | 
![]() 4.8.6  | 
![]() 4.8.8  | 
![]() 4.8.10  | 
![]() 4.8.12  | 
![]() 4.8.14  | 
![]() 4.8.16  | 
![]() 4.8.∞  | 
| Omnitruncated duals  | 
![]() V4.8.4  | 
![]() V4.8.6  | 
![]() V4.8.8  | 
![]() V4.8.10  | 
![]() V4.8.12  | 
![]() V4.8.14  | 
![]() V4.8.16  | 
![]() V4.8.∞  | 
| *nn2 symmetry mutations of omnitruncated tilings: 4.2n.2n | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry *nn2 [n,n]  | 
Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||||||||
| *222 [2,2]  | 
*332 [3,3]  | 
*442 [4,4]  | 
*552 [5,5]  | 
*662 [6,6]  | 
*772 [7,7]  | 
*882 [8,8]...  | 
*∞∞2 [∞,∞]  | |||||||
| Figure | ![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | ||||||
| Config. | 4.4.4 | 4.6.6 | 4.8.8 | 4.10.10 | 4.12.12 | 4.14.14 | 4.16.16 | 4.∞.∞ | ||||||
| Dual | ![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | ||||||
| Config. | V4.4.4 | V4.6.6 | V4.8.8 | V4.10.10 | V4.12.12 | V4.14.14 | V4.16.16 | V4.∞.∞ | ||||||
| Uniform pentagonal/square tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [5,4], (*542) | [5,4]+, (542) | [5+,4], (5*2) | [5,4,1+], (*552) | ||||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | ||
| {5,4} | t{5,4} | r{5,4} | 2t{5,4}=t{4,5} | 2r{5,4}={4,5} | rr{5,4} | tr{5,4} | sr{5,4} | s{5,4} | h{4,5} | ||
| Uniform duals | |||||||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | |||
| V54 | V4.10.10 | V4.5.4.5 | V5.8.8 | V45 | V4.4.5.4 | V4.8.10 | V3.3.4.3.5 | V3.3.5.3.5 | V55 | ||
See also
| Wikimedia Commons has media related to Uniform tiling 4-8-10. | 
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
 - "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
 
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
 - Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
 - Hyperbolic and Spherical Tiling Gallery
 - KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
 - Hyperbolic Planar Tessellations, Don Hatch
 
  | ||||||||||||||||||||||||||||||||||||||
This article is issued from Wikipedia - version of the Sunday, April 03, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.





















































