Cantic octagonal tiling
| Tritetratrigonal tiling | |
|---|---|
![]() Poincaré disk model of the hyperbolic plane  | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | 3.6.4.6 | 
| Schläfli symbol | h2{8,3} | 
| Wythoff symbol | 4 3 | 3 | 
| Coxeter diagram | |
| Symmetry group | [(4,3,3)], (*433) | 
| Dual | Order-4-3-3 t12 dual tiling | 
| Properties | Vertex-transitive | 
In geometry, the tritetratrigonal tiling or shieldotritetragonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t1,2(4,3,3). It can also be named as a cantic octagonal tiling, h2{8,3}.
Dual tiling

Related polyhedra and tiling
| Symmetry: [(4,3,3)], (*433) | [(4,3,3)]+, (433) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | |||
| h{8,3} t0{(4,3,3)} {(4,3,3)}  | 
r{8,3} t0,1{(4,3,3)}  | 
h{8,3} t1{(4,3,3)} {(3,3,4)}  | 
h2{8,3} t1,2{(4,3,3)}  | 
{3,8} t2{(4,3,3)} {(3,4,3)}  | 
h2{8,3} t0,2{(4,3,3)}  | 
t{3,8} t0,1,2{(4,3,3)} t{(4,3,3)}  | 
s{3,8} s{(4,3,3)}  | |||
| Uniform duals | ||||||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | |||
| V(3.4)3 | V3.8.3.8 | V(3.4)3 | V3.6.4.6 | V(3.3)4 | V3.6.4.6 | V6.6.8 | V3.3.3.3.3.4 | |||
| Symmetry *n32 [1+,2n,3] = [(n,3,3)]  | 
Spherical | Euclidean | Compact Hyperbolic | Paracompact | ||
|---|---|---|---|---|---|---|
| *233 [1+,4,3] = [3,3]  | 
*333 [1+,6,3] = [(3,3,3)]  | 
*433 [1+,8,3] = [(4,3,3)]  | 
*533 [1+,10,3] = [(5,3,3)]  | 
*633... [1+,12,3] = [(6,3,3)]  | 
*∞33 [1+,∞,3] = [(∞,3,3)]  | |
| Coxeter Schläfli  | 
h2{4,3}  | 
h2{6,3}  | 
h2{8,3}  | 
h2{10,3}  | 
h2{12,3}  | 
h2{∞,3}  | 
| Cantic figure  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
| Vertex | 3.6.2.6 | 3.6.3.6 | 3.6.4.6 | 3.6.5.6 | 3.6.6.6 | 3.6.∞.6 | 
![]() Domain  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
| Wythoff | 2 3 | 3 | 3 3 | 3 | 4 3 | 3 | 5 3 | 3 | 6 3 | 3 | ∞ 3 | 3 | 
| Dual figure  | 
![]()  | 
![]()  | 
![]()  | 
|||
| Face | V3.6.2.6 | V3.6.3.6 | V3.6.4.6 | V3.6.5.6 | V3.6.6.6 | V3.6.∞.6 | 
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
 - "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
 
See also
| Wikimedia Commons has media related to Uniform tiling 3-6-4-6. | 
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
 - Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
 - Hyperbolic and Spherical Tiling Gallery
 - KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
 - Hyperbolic Planar Tessellations, Don Hatch
 
  | ||||||||||||||||||||||||||||||||||||||
This article is issued from Wikipedia - version of the Sunday, October 26, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.




























