S-Nitrosylation

S-Nitrosylation specifically attaches to a thiol group to form an S-nitrosothiol (SNO). Where the thiol group belongs to a subset of specific cysteine residues in proteins, the resulting SNO is an S-nitrosoprotein. S-Nitrosylation is a form of post-translational protein modification with similarities to phosphorylation.[1] S-Nitrosylation meets the criteria for validation as a signaling mechanism in that it is stimulus evoked,[2] precisely targeted,[3] reversible,[4] spatiotemporally restricted[5][6] and necessary for specific cell responses.[7] The first protein whose activity was shown to be regulated by S-nitrosylation in this fashion was the NMDA-type glutamate receptor in the brain.[8][9] S-Nitrosylation has since been shown to be ubiquitous in biology, having been demonstrated to occur in all phylogenetic Kingdoms[10][11] and has been described as the prototypic redox-based signalling mechanism,[12] hypothesized to have evolved on primordial Earth.[13]

The reverse process of S-nitrosylation is termed denitrosylation, which in addition to occurring spontaneously in the presence of metal ions and under conditions of photolysis,[14] has recently been demonstrated to be an enzymically controlled process. S-Nitrosoglutathione reductase (GSNOR), which accelerates the decomposition of S-nitrosoglutathione (GSNO) and other SNO-proteins, is an alcohol dehydrogenase class III isoenzyme which has been shown to be conserved from bacteria to humans.[15] Similarly, the thioredoxin/thioredoxin reductase system catalyzes the denitrosylation of a number of S-nitrosoproteins[16][17][18] Aberrant or dysregulated denitrosylation or S-nitrosylation has been associated with stroke (cerebral ischemia)[19] and a number of chronic degenerative diseases, including Parkinson's and Alzheimer's disease[20][21][22][23] and Amyotrophic Lateral Sclerosis (ALS).[24] There is an emerging role of S-nitrosylation in cancer biology.[25] S-Nitrosylation of EGFR and Src activates an oncogenic signaling network in human basal-like breast cancer [26]

References

  1. Anand P, Stamler JS. J. Mol. Med. (Berl). 90(3): 233-244 (2012)
  2. Hoffmann, J, Dimmeler, S, Haendeler, J. FEBS Lett. 551:153-158 (2003)
  3. Sun JH, Xin CL, Eu JP, Stamler JS, Meissner G. Proc. Natl. Acad. Sci. U S A 98:11158-11162 (2003)
  4. Padgett CM, Whorton AR. Am. J. Physiol. 269:739-749 (1995)
  5. Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH. Neuron 28:183-193 (2000)
  6. Iwakiri Y, Satoh A, Chatterjee S, Toomre DK, Chalouni CM, Fulton D, Groszmann RJ, Shah VH, Sessa WC. Proc. Natl. Acad. Sci. U S A 103:19777-19782 (2006)
  7. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Nat. Rev. Mol. Cell. Biol. 6:150-166 (2005)
  8. Lei SZ, Pan Z-H, Aggarwal SK, Chen H-SV, Hartman J, Sucher NJ, Lipton SA. Neuron 8(6):1087-1099 (1992)
  9. Lipton SA, Choi Y-B, Pan Z-H, Lei SZ, Chen H-SV, Sucher NJ, Singel DJ, Loscalzo J, Stamler JS. Nature 364(6438):626-632 (1993)
  10. Seth D, Hausladen A, Wang YJ, Stamler JS. Science 336(6080):470-473 (2012)
  11. Malik SI, Hussain A, Yun BW, Spoel SH, Loake GJ. Plant Sci. 181(5):540-544 (2011)
  12. Stamler JS, Lamas S, Fang FC. Cell 106(6):675-683 (2001)
  13. Derakhshan B, Hao G, Gross SS. Cardiovasc. Res. 75(2):210-219 (2007)
  14. Singh RJ, Hogg N, Joseph J, Kalyanaraman B. J. Biol. Chem. 271(31):18596-603 (1996)
  15. Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS. Nature 410(6827):490-4 (2001)
  16. Stoyanovsky DA, Tyurina YY, Tyurin VA, Anand D, Mandavia DN, Gius D, Ivanova J, Pitt B, Billiar TR, Kagan VE. J. Am. Chem. Soc. 127:15815-23 (2005)
  17. Sengupta R, Ryter SW, Zuckerbraun BS, Tzeng E, Billiar TR, Stoyanovsky DA. Biochemistry. 46:8472-83 (2007)
  18. Benhar M, Forrester MT, Hess DT, Stamler JS. Science 320:1050-4 (2008)
  19. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA. Science 297(5584):1186-90 (2002)
  20. Yao D, Gu Z, Nakamura T, Shi Z-Q, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, Uehara T, Lipton SA. Proc. Natl. Acad. Sci. U S A 101(29):10810-4 (2004)
  21. Uehara T, Nakamura T, Yao D, Shi Z-Q, Gu Z, Masliah E, Nomura Y, Lipton SA. Nature 2441(7092):513-7 (2006)
  22. Benhar M, Forrester MT, Stamler JS. ACS Chem. Biol. 1(6):355-8 (2006)
  23. Cho D-H, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA. Science 324(5923):102-5 (2009)
  24. Schonhoff CM, Matsuoka M, Tummala H, Johnson MA, Estevéz AG, Wu R, Kamaid A, Ricart KC, Hashimoto Y, Gaston B, Macdonald TL, Xu Z, Mannick JB. Proc. Natl. Acad. Sci. U S A 103(7):2404-9 (2006)
  25. Aranda E, López-Pedrera C, De La Haba-Rodriguez JR, Rodriguez-Ariza A. Curr. Mol. Med. 12(1):50-67 (2012)
  26. Switzer CH, Glynn SA, Cheng RY, Ridnour LA, Green JE, Ambs S, Wink DA. Mol Cancer Res.Sep;10(9):1203-15.(2012)
This article is issued from Wikipedia - version of the Sunday, January 31, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.