Silanization

Silanization is the covering of a surface through self-assembly with organofunctional alkoxysilane molecules. Mineral components like Mica, glass and metal oxide surfaces can all be silanized, because they contain hydroxyl groups which attack and displace the alkoxy groups on the silane thus forming a covalent -Si-O-Si- bond. The goal of silanization is to form bonds across the interface between mineral components and organic components present in paints, adhesives, etc. Silanization (or siliconization) of glassware increases its hydrophobicity and is used in cell culturing to reduce adherence of cells to flask walls.[1]

Properties

Organofunctional alkoxysilane molecules have both organic and inorganic properties.

Organofunctional alkoxysilanes

The alkoxy groups usually used are the methoxy (-OCH3) and the ethoxy (-OCH2CH3) groups. The organofunctional alkoxysilanes are classified according to their organic functions:

Aminosilanes

The organic function is a primary or secondary amine:

Structural formula of (3-aminopropyl)triethoxysilane (APTES)

Glycidoxysilanes

The organic function is an epoxide:

Mercaptosilanes

The organic function is a thiol:

References

  1. Seed, Brian (May 2001). "APPENDIX 3E Silanizing Glassware". Current Protocols in Cell Biology: A.3E.1. doi:10.1002/0471143030.cba03es08.
This article is issued from Wikipedia - version of the Thursday, January 30, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.