Smart glass
Smart glass or switchable glass (also smart windows or switchable windows in those applications) is glass or glazing whose light transmission properties are altered when voltage, light or heat is applied. Generally, the glass changes from translucent to transparent, changing from blocking some (or all) wavelengths of light to letting light pass through.
Smart glass technologies include electrochromic, photochromic, thermochromic, suspended particle, micro-blind and polymer dispersed liquid crystal devices.[1]
When installed in the envelope of buildings, smart glass creates climate adaptive building shells, with the ability to save costs for heating, air-conditioning and lighting[2][3] and avoid the cost of installing and maintaining motorized light screens or blinds or curtains. Blackout smart glass blocks 99.4% of ultraviolet light, reducing fabric fading; for SPD-type smart glass, this is achieved in conjunction with low emissivity coatings.
Critical aspects of smart glass include material costs, installation costs, electricity costs and durability, as well as functional features such as the speed of control, possibilities for dimming, and the degree of transparency.
Electrically switchable smart glass
Suspended particle devices (SPDs)
In suspended particle devices (SPDs), a thin film laminate of rod-like nano-scale particles is suspended in a liquid and placed between two pieces of glass or plastic, or attached to one layer. When no voltage is applied, the suspended particles are randomly organized, thus blocking and absorbing light. When voltage is applied, the suspended particles align and let light pass. Varying the voltage of the film varies the orientation of the suspended particles, thereby regulating the tint of the glazing and the amount of light transmitted.
SPDs can be manually or automatically "tuned" to precisely control the amount of light, glare and heat passing through, reducing the need for air conditioning during the summer months and heating during winter. Smart glass can be controlled through a variety of mediums, such as automatic photosensors and motion detectors, smartphone applications, integration with intelligent building and vehicle systems, knobs or light switches.
Smart glass light-control technology increases users' control over their environment, provides for better user comfort and well-being and improves energy efficiency. The technology provides over 99% UV blockage and state switching in 1 to 3 seconds. In cars, the range of light transmission for the technology is 50-60 times darker than a typical sunroof to twice as clear as an ordinary sunroof. Published data by Mercedes-Benz shows that SPD technology can reduce cabin temperatures inside a vehicle by 18 °F (10 °C). Other advantages include reduction of carbon emissions and the elimination of a need for expensive window dressings.
SPD-Smart Glass was patented by the public company Research Frontiers.
Automotive
Commercialization of SPD is accelerating in the automotive industry. SPD automotive side and rear windows and sunroofs offer many benefits to passengers in the vehicle. Because of their fast-switching and infinite tunability, they reduce unwanted light and glare, which allows users to more comfortably maintain their views of the outside and to enjoy glare-free viewing of displays and video screens. SPD automotive glass also minimizes heat build-up inside the vehicle because of their ability to block solar heat gain. They automatically switch to their maximum heat-blocking state when the vehicle is not in use. These features improve a vehicle’s fuel efficiency and reduce carbon emissions. The deep tinting of SPD windows also gives users instant privacy on demand.
Aircraft
Over 30 different aircraft models have SPD windows in operation. SPD windows reduce maintenance costs, block UV radiation to protect interiors, and block cabin heat build-up.
Marine
Adaptability and control are especially important in the marine environment. SPD lets the user instantly and precisely control the amount of light, glare and heat passing through windows, skylights, portholes, partitions and doors.
Architectural
Architectural SPD products – windows, skylights, doors and partitions – are available as laminated panels or insulated glass units for new construction, replacement and retrofit projects. These products offer a distinctive blend of energy efficiency, user comfort and security. Architectural products made with SPD technology:
- Eliminate blinds and shades
- Preserve daytime and nighttime views
- Allow people to enjoy shading on-demand
- Minimize glare
- Reduce heating and cooling requirements
- Maximize daylighting
- Protect interior furnishings and artwork from fading
Electrochromic devices
Electrochromic devices change light transmission properties in response to voltage and thus allow control over the amount of light and heat passing through. In electrochromic windows, the electrochromic material changes its opacity: it changes between a colored, translucent state (usually blue) and a transparent state. A burst of electricity is required for changing its opacity, but once the change has been effected, no electricity is needed for maintaining the particular shade which has been reached. Darkening occurs from the edges, moving inward, and is a slow process, ranging from many seconds to several minutes depending on window size. Electrochromic glass provides visibility even in the darkened state and thus preserves visible contact with the outside environment. It has been used in small-scale applications such as rearview mirrors. Electrochromic technology also finds use in indoor applications, for example, for protection of objects under the glass of museum display cases and picture frame glass from the damaging effects of the UV and visible wavelengths of artificial light.
Recent advances in electrochromic materials pertaining to transition-metal hydride electrochromics have led to the development of reflective hydrides, which become reflective rather than absorbing, and thus switch states between transparent and mirror-like.
Recent advancements in modified porous nano-crystalline films have enabled the creation of electrochromic display. The single substrate display structure consists of several stacked porous layers printed on top of each other on a substrate modified with a transparent conductor (such as ITO or PEDOT:PSS). Each printed layer has a specific set of functions. A working electrode consists of a positive porous semiconductor (say Titanium Dioxide, TiO2) with adsorbed chromogens (different chromogens for different colors). These chromogens change color by reduction or oxidation. A passivator is used as the negative of the image to improve electrical performance. The insulator layer serves the purpose of increasing the contrast ratio and separating the working electrode electrically from the counter electrode. The counter electrode provides a high capacitance to counterbalances the charge inserted/extracted on the SEG electrode (and maintain overall device charge neutrality). Carbon is an example of charge reservoir film. A conducting carbon layer is typically used as the conductive back contact for the counter electrode. In the last printing step, the porous monolith structure is overprinted with a liquid or polymer-gel electrolyte, dried, and then may be incorporated into various encapsulation or enclosures, depending on the application requirements. Displays are very thin, typically 30 micrometer, or about 1/3 of a human hair. The device can be switched on by applying an electrical potential to the transparent conducting substrate relative to the conductive carbon layer. This causes a reduction of viologen molecules (coloration) to occur inside the working electrode. By reversing the applied potential or providing a discharge path, the device bleaches. A unique feature of the electrochromic monolith is the relatively low voltage (around 1 Volt) needed to color or bleach the viologens. This can be explained by the small over- potentials needed to drive the electrochemical reduction of the surface adsorbed viologens/chromogens.
Polymer dispersed liquid crystal devices
In polymer dispersed liquid crystal devices (PDLCs), liquid crystals are dissolved or dispersed into a liquid polymer followed by solidification or curing of the polymer. During the change of the polymer from a liquid to solid, the liquid crystals become incompatible with the solid polymer and form droplets throughout the solid polymer. The curing conditions affect the size of the droplets that in turn affect the final operating properties of the "smart window". Typically, the liquid mix of polymer and liquid crystals is placed between two layers of glass or plastic that include a thin layer of a transparent, conductive material followed by curing of the polymer, thereby forming the basic sandwich structure of the smart window. This structure is in effect a capacitor.
Electrodes from a power supply are attached to the transparent electrodes. With no applied voltage, the liquid crystals are randomly arranged in the droplets, resulting in scattering of light as it passes through the smart window assembly. This results in the translucent, "milky white" appearance. When a voltage is applied to the electrodes, the electric field formed between the two transparent electrodes on the glass causes the liquid crystals to align, allowing light to pass through the droplets with very little scattering and resulting in a transparent state. The degree of transparency can be controlled by the applied voltage. This is possible because at lower voltages, only a few of the liquid crystals align completely in the electric field, so only a small portion of the light passes through while most of the light is scattered. As the voltage is increased, fewer liquid crystals remain out of alignment, resulting in less light being scattered. It is also possible to control the amount of light and heat passing through, when tints and special inner layers are used. It is also possible to create fire-rated and anti X-Ray versions for use in special applications. Most of the devices offered today operate in on or off states only, even though the technology to provide for variable levels of transparency is easily applied. This technology has been used in interior and exterior settings for privacy control (for example conference rooms, intensive-care areas, bathroom/shower doors) and as a temporary projection screen. It is commercially available in rolls as adhesive backed Smart film that can be applied to existing windows and trimmed to size in the field.
Micro-blinds
Micro-blinds—currently under development at the National Research Council (Canada)[4][5]—control the amount of light passing through in response to applied voltage. Micro-blinds are composed of rolled thin metal blinds on glass. They are very small and thus practically invisible to the eye. The metal layer is deposited by magnetron sputtering and patterned by laser or lithography process. The glass substrate includes a thin layer of a transparent conductive oxide (TCO) layer. A thin insulator is deposited between the rolled metal layer and the TCO layer for electrical disconnection. With no applied voltage, the micro-blinds are rolled and let light pass through. When there is a potential difference between the rolled metal layer and the transparent conductive layer, the electric field formed between the two electrodes causes the rolled micro-blinds to stretch out and thus block light. The micro-blinds have several advantages, including switching speed (milliseconds), UV durability, customized appearance and transmission. Theoretically, the blinds are simple and cost-effective to fabricate.[4][5] A video available on YouTube[6] describes briefly the micro-blinds.
Nanocrystal
A thin coating of nanocrystals embedded in glass can provide selective control over both visible light and heat-producing near-infrared (NIR) light independently climates. The technology employs a small jolt of electricity to switch the material between NIR-transmitting and NIR-blocking states. Nanocrystals of indium tin oxide embedded in a glassy matrix of niobium oxide form a composite material. The voltage ranges over 2.5 volts. The same window can also be switched to a dark mode, blocking both light and heat, or to a bright, fully transparent mode. The effect relies on a synergistic interaction in the region where glassy matrix meets nanocrystal that increases the electrochromic effect. The atoms connect across the nanocrystal-glass interface, causing a structural rearrangement in the glass matrix.The interaction creates space inside the glass, allowing charge to move more readily.[7][8]
Non-electrical smart glass
Mechanical smart windows
VISTAMATIC
A low cost alternative to high-tech e-glass or smart glass is VISTAMATIC Vision Panels that is a privacy glass made up of three sheets of glass sealed as a single panel with evenly spaced, alternating lines and a sleek handle to allow privacy or observation. Customized to the needs of the facility, these non-electric privacy glass vision panels are manually operated while still providing a frosted look similar to its electric counterpart. Due to its thinner profile of only 11/16" thick, it has a lower installation cost as well as a lifetime warranty to avoid replacements or repairs.
Sunvalve
A low cost alternative to high-tech intelligent windows is composed of two retro reflective panels mounted back-to-back with a narrow gap in between. When a liquid with the same refractive index as that of the panels is pumped into the cavity between them, the glass becomes transparent. When the liquid is pumped out, the glass turns retro reflective again. An example of this kind of window is the Norwegian brand Sunvalve.
Smartershade
Another low-cost alternative to electronic smart glass is Smartershade. This glass consists of two panes of polarized glass with a patterned optical axis that allows it to transition smoothly between shades of gray to near complete blackout opacity. The advantage is a much higher light extinction (blackout) than EC or SPD glass at a much lower cost. The drawbacks are that it requires two panes, one of which must be able to move, and that at its most transparent it admits only 50% of incident light. This glass can also be produced as a clear to mirror, or smartmirror.[9]
Related areas of technology
The expression smart glass can be interpreted in a wider sense to include also glazings that change light transmission properties in response to an environmental signal such as light or temperature.
- Different types of glazing can show a variety of chromic phenomena, that is, based on photochemical effects the glazing changes its light transmission properties in response to an environmental signal such as light (photochromism), temperature (thermochromism), or voltage (electrochromism).
- Liquid crystals, when they are in a thermotropic state, can change light transmission properties in response to temperature.
- Recent advances in electrochromic materials have led to the discovery that transition metal hydride electrochromics create a reflective face instead of an absorbent face. These materials have the same idea, but go about the problem in a different way by switching between a transparent state when they are off to a reflective state when a voltage is applied. Switchable mirrors were originally developed by Ronald Griessen at the Vrije Universiteit in Amsterdam.[10] They used rare earth metals and created the first metal-hydride switchable mirrors. Low emittance coatings reject unwanted thermal heat due to solar infrared. These mirrors have become common place in cars’ rearview mirrors in order to block the glare of following vehicles. An optically absorbing electrochromic color reduces the reflection intensity. These mirrors must be fully transformed to a reflective state as muted reflection must persist in the darkened state. Originally a metal, they are converted into a transparent hydride by injecting hydrogen in a gas or liquid phase. It then switches to a reflective state.
- Various metals have been investigated. Thin Mg-Ni films have low visible transmittance and are reflective. When they are exposed to H2 gas or reduced by an alkaline electrolyte, they become transparent. This transition is attributed to the formation of magnesium nickel hydride, Mg2NiH4. Films were created by cosputtering from separate targets of Ni and Mg to facilitate variations in composition. Single-target d.c. magnetron sputtering could be used eventually which would be relatively simple compared to deposition of electrochromic oxides, making them more affordable. Lawrence Berkeley National Laboratory determined that new transition metals were cheaper and less reactive, but contained the same qualities, thus further reducing the cost.
- Tungsten-doped Vanadium dioxide VO2 coating reflects infrared light when the temperature rises over 29 degrees Celsius, to block out sunlight transmission through windows at high ambient temperatures.
These types of glazings cannot be controlled manually. In contrast, all electrically switched smart windows can be made to automatically adapt their light transmission properties in response to temperature or brightness by integration with a thermometer or photosensor, respectively
The topic of smart windows in a further sense includes LED (Light Emitting Diodes) Embedded Films which may be switched on at reduced light intensity. The process of laminating these LED embedded films between glass will allow the production of Transparent LED embedded glasses. As most glass companies are not skilled in mounting LEDs onto metallized glass,[11] the LEDs are located on a separate transparent conductive polymeric interlayer[12] that may be laminated by any glass lamination unit.
- Production technologies
Smart glass is produced by means of lamination of two or more glass or polycarbonate sheets.[13]
Examples of use
Smart glass using one of the aforementioned technologies has been seen in a number of high-profile applications. Large-scale installations were completed at the Guinness Storehouse in Dublin, where over 800,000 people per year can see smart glass being used in interactive displays and privacy windows. Smart glass was used to launch the Nissan Micra CC in London using a four-sided glass box made up of 150 switchable glass panels which switched in sequence to create a striking outdoor display. The main use for smart glass is in internal partitions, where many companies now enjoy the ability to switch screens and doors from clear to private.
Smart glass has found uses in the healthcare industry, where easily cleaned surfaces are essential and there are considerations of patient privacy. Smart glass products can replace traditional blind systems that are difficult to clean and can harbor dirt and bugs. Research has shown that patient comfort can help reduce recovery time.
One of the most popular smart glass applications is as projection screens.
Another example of use is the installation of PDLC-based smart glass, in The EDGE, a glass cube which protrudes out from the 88th-floor skydeck of the world's highest residential tower, Eureka Towers, located in Melbourne. The cube can hold 13 people. When it extends out of the building by 3 metres, the glass is made transparent, giving the cube's occupants views of Melbourne from a height of 275 metres. The same type of smart glass has also been proposed for use in hospital settings to controllably provide patients with privacy as needed.
PDLC technology was used in a display to unveil the Nissan GTR at the Canadian International Auto Show in Toronto.
Electro chromatic glass was used on the 1988 Cadillac voyage concepts body which adjusted the sun load on the car and can darken it.
In the media, the updated set for the Seven Network's Sunrise program features a Smart Glass background that uses liquid crystal switchable glass. The new set with Smart Glass allows the street scene to be visible at times, or replaced with either opaque or transparent blue colouring, masking the view.
Bloomberg Television currently features Smart Glass backgrounds in its studios in New York, Hong Kong and London.
The Boeing 787 Dreamliner features electrochromic windows which replace the pull down window shades on existing aircraft. NASA is looking into using electrochromics to manage the thermal environment experienced by the newly developed Orion and Altair space vehicles.
Smart glass has been used in some small-production cars. The Ferrari 575 M Superamerica had an electrochromic roof as standard, and the Maybach has a PDLC roof as option. Some Privacy Glass has been applied in the Maybach 62 car for privacy protection purposes.
A Hong Kong office uses 130 square meters of Privacy Glass, which is available in sizes up to 1,500 x 3,200 mm.
ICE 3 high speed trains use electrochromatic glass panels between the passenger compartment and the driver's cabin.
The elevators in the Washington Monument use smart glass in order for passengers to view the commemorative stones inside the monument.
|
The city's restroom in Amsterdam's Museumplein square features smart glass for ease of determining the occupancy status of an empty stall when the door is shut, and then for privacy when occupied.
Bombardier Transportation has intelligent on-blur windows in the Bombardier Innovia APM 100 operating on Singapore's Bukit Panjang LRT Line, to prevent passengers from peering into apartments as the trains pass by[14] and is planning to offer windows using smart glass technology in its Flexity 2 light rail vehicles.[15]
Popular culture
- The 1982 film Blade Runner contains an early depiction of smart glass in a scene in which a room is darkened with a smart glass-like shade so Rick Deckard, played by Harrison Ford, can administer a polygraph-style test to determine whether Rachael, portrayed by Sean Young, is an organic robot known as a replicant.
- The 1993 film Philadelphia features a scene in which a large conference room in the middle of the law firm has walls of glass on three sides. Jason Robards says, "Bill, will you get the windows?", and a switch is thrown, and all the windows immediately become translucent, so that no one can see them firing Tom Hanks' character.
- Smart glass is seen in the 2002 motion picture The Sum of all Fears, in which Jack Ryan, played by Ben Affleck, is ushered into a secret room in the Pentagon, the windows of which whiten over as the door is shut.
- Smart glass can be seen in the third season of the television series 24, where Jack Bauer changed the visibility to frosted glass to conceal the view as he was injecting heroin.
- Smart glass is mentioned in Season Three, Episode Five of CSI:Miami, entitled "Legal", in which a young lady working undercover to expose underage drinking is murdered in a room shielded by what Ryan Wolfe refers to as "intelligent glass", where closing the door completes an electrical circuit, making the glass frost over and become opaque. The episode first aired in 2004.
- Smart glass is seen in the television series Lie To Me with the interrogation/interview room at the Lightman Group offices consisting of what amounts to a room-sized box within a larger room, with smart glass walls. The walls appear to be white and opaque most of the time, but can be rendered clear to reveal those observing a subject from the outside.
- Smart glass was featured in 2005 video game Tom Clancy's Splinter Cell: Chaos Theory in a fifth mission Displace International, enabling the main character to quickly switch between on and off modes with his OCP pistol attachment.
- Smart glass is seen in use in White Collar season 1 episode 8 "Hard Sell" when Neal comes to tell Daniel Reed that Avery plans to betray him. Daniel flips a switch and his office window becomes frosted over, preventing Avery from peeking inside while they talk.
- Smart glass was featured in the 2012 James Bond movie Skyfall, revealing Raoul Silva to M after he's captured.
- Smart glass was used in the bathroom in the Real World: Austin.
- Dimmable smart glass was featured in the 2014 film, Captain America: The Winter Soldier, in the S.H.I.E.L.D. office in Washington, D.C.
- Smart glass was featured in the 2014 animated feature Big Hero 6, used by Tadashi Hamada for his office.
See also
- Claes-Göran Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, 1995, reprinted 2002, approx. 650 pages
- Heatable glass
- SAGE Electrochromics
- View, Inc.
- Smart film
References
- ↑ Baetens, R.; Jelle, B.P.; Gustavsen, A. (2010). "Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review". Solar Energy Materials and Solar Cells 94 (2): 87–105. doi:10.1016/j.solmat.2009.08.021.
- ↑ Lee, E.S.; Tavil, A. (2007). "Energy and visual comfort performance of electrochromic windows with overhangs". Building and Environment 42 (6): 2439–2449. doi:10.1016/j.buildenv.2006.04.016.
- ↑ Loonen, R.C.G.M.; Singaravel, S.; Trcka, M; Costola, D; Hensen, J.L.M. (2014). "Simulation-based support for product development of innovative building envelope components". Automation in Construction 45: 86–95. doi:10.1016/j.autcon.2014.05.008.
- 1 2 "Microblinds and a method of fabrication thereof, United States Patent 2006196613". Freepatentsonline.com. Retrieved 2013-05-19.
- 1 2 Boris Lamontagne, Pedro Barrios, Christophe Py and Suwas Nikumb (2009). "The next generation of switchable glass: the Micro-Blinds". GLASS PERFORMANCE DAYS 2009: 637–639.
- ↑ "Smart glass based on micro-blinds".
- ↑
- ↑ Llordés, A.; Garcia, G.; Gazquez, J.; Milliron, D. J. (2013). "Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites". Nature 500 (7462): 323. doi:10.1038/nature12398.
- ↑ McLeod, William. "Wire Grid Polarizers in Window Shading Applications and Varying Thickness Retarders". USPTO. USPTO. Retrieved 2014-05-05.
- ↑ Huiberts, N.; Griessen R., Rector J. H., Wijngaarden R. J., Dekker J. P., De Groot D. G., Koeman N. J. (21 March 1996). "Yttrium and lanthanum hydride films with switchable optical properties". Nature 380: 231–234. Bibcode:1996Natur.380..231H. doi:10.1038/380231a0. Cite uses deprecated parameter
|coauthors=
(help) - ↑ http://www.glas-platz.de/powerglass/en/technologie.html
- ↑ SUN-TEC Swiss United Technologies Inc. Daniel Shavit, DE202007008410 "Translucent conductive Interlayer with SMD Surface Mounted Electronic Devices - LED embedded films"
- ↑ Technologies of smart glass production Archived September 13, 2011, at the Wayback Machine.
- ↑ "Bombardier INNOVIA APM100 (C801), Singapore". SG Trains. 2015-07-23. Archived from the original on 2015-07-23.
The Bombardier INNOVIA APM100 (C801) trains are Singapore's first variant of LRT cars, which operates on the 14 station Bukit Panjang LRT Line operated by SMRT Light Rail Ltd. They were first developed by Adtranz as the CX-100, which was later acquired by Bombardier Transportation and renamed in 2001.
- ↑ "Bombardier to Feature Vision Systems' Nuance With SPD-SmartGlass From Research Frontiers at InnoTrans 2014 in Berlin, Germany". CNN Money. 2014-09-18. Archived from the original on 2014-09-19.
This electronically dimmable window technology provides unsurpassed thermal insulation: SPD-SmartGlass substantially rejects solar heat from entering through windows. When compared to conventional automotive glass, Mercedes-Benz reported that the use of SPD-SmartGlass significantly reduced the temperature inside the vehicle by up to 18ºF/10ºC. This increases passenger comfort and reduces air conditioning loads, thereby saving fuel and reducing CO2 emissions.
External links
Wikimedia Commons has media related to Smart glass. |
- Chromogenics, in: Windows and Daylighting at Lawrence Berkeley National Laboratory
- Smart glass blocks infrared when heat is on, NewScientist.com news service
- Switchable Glass: A possible medium for Evolvable Hardware, NASA conference on Adaptive Hardware Systems, IEEE CS Press, pp 81–87, 2006.
- Switchable Glazing Windows Change the light transmittance, transparency, or shading of windows at toolbase.org
- Video of electrochromic smart glass changing from translucent to transparent at YouTube
- Overview of the types of Smart Glass technologies including Electrochromic vs. PDLC Smart Glass at SlideShare
- Manufacturing Technology for Smart Glasses