Synthetic oil

For synthetic liquid hydrocarbons, see Synthetic fuel.
A sample of synthetic motor oil

Synthetic oil is a lubricant consisting of chemical compounds that are artificially made (synthesized). Synthetic lubricants can be manufactured using chemically modified petroleum components rather than whole crude oil, but can also be synthesized from other raw materials.

Synthetic oil is used as a substitute for petroleum-refined oils when operating in extreme temperature.. Aircraft jet engines, for example, require the use of synthetic oils, whereas aircraft piston engines do not. Synthetic oils are also used in metal stamping to provide environmental and other benefits when compared to conventional petroleum and animal-fat based products. These products are also referred to as "non-oil" or "oil free".

Types

Full synthetics

Full synthetic oils are fully man-made and tailored to have a controlled molecular structure with predictable properties. They are composed of organic and inorganic base stock oils combined with polymer packages to produce synthesised oil compounds. The oils are categorized by American Petroleum Institute into API Groups III, IV & V.

API Group IV: PAO

Poly-alpha-olefin (or poly-α-olefin, abbreviated as PAO) is a polymer made by polymerizing an alpha-olefin. They are designated at API Group IV and are a 100% synthetic chemical compound. It is a specific type of olefin (organic) that is used as a base stock in the production of some synthetic lubricants. An alpha-olefin (or α-olefin) is an alkene where the carbon-carbon double bond starts at the α-carbon atom, i.e. the double bond is between the #1 and #2 carbons in the molecule.[1]

API Group V: Ester

API Group V Esters are 100% Synthetic chemical compounds consisting of a carbonyl adjacent to an ether linkage. They are derived by reacting an oxoacid with a hydroxyl compound such as an alcohol or phenol. Esters are usually derived from an inorganic acid or organic acid in which at least one -OH (hydroxyl) group is replaced by an -O-alkyl (alkoxy) group, most commonly from carboxylic acids and alcohols. That is to say, esters are formed by condensing an acid with an alcohol.

Many chemically different "esters" due to their usually excellent lubricity are used for various reasons as either "additives" or "base stocks" for lubricants. [1]

Semi-synthetic oil

Semi-synthetic oils (also called "synthetic blends") are a mixture of mineral oil and synthetic oil, with no more than 30% synthetic oil, which are engineered to have many of the benefits of full synthetic oil without the cost. Motul introduced the first semi-synthetic motor oil in 1966.[2]

Lubricants that have synthetic base stocks even lower than 30% but with high-performance additives consisting of esters can also be considered synthetic lubricants. In general, the ratio of the synthetic base stock is used to define commodity codes among the customs declarations of tax purposes.

Other base stocks help semi-synthetic lubricants

API Group II- and API Group III-type base stocks help to formulate more economic-type semi-synthetic lubricants. API Group I-, II-, II+-, and III-type mineral-base oil stocks are widely used in combination with additive packages, performance packages, and ester and/or API Group IV poly-alpha-olefins in order to formulate semi-synthetic-based lubricants. API Group III base oils are sometimes considered Fully synthetic, but they are still classified as highest-top-level mineral-base stocks. A Synthetic or Synthesized material is one that is produced by combining or building individual units into a unified entry. Synthetic base stocks as described above are man-made and tailored to have a controlled molecular structure with predictable properties, unlike mineral base oils, which are complex mixtures of naturally occurring hydrocarbons and paraffins.[3] [4]

Performance

The advantages of using synthetic motor oils include:

However synthetic motor oils are substantially more expensive (per volume) than mineral oils and have potentially decomposition problems in certain chemical environments (predominantly in industrial use).

See also

References

  1. 1 2 SynLube Incorporated. All About Synthetic Oil
  2. DELPHI history
  3. ASTM Fuels & Lubricants Handbook, Hydrocarbon Chemistry, pg 169-184, section 7
  4. Wills, J. George (of Mobil Oil Corporation) (1980). Lubrication Fundamentals. M. Dekker. ISBN 9780824769765.
  5. http://link.springer.com/article/10.3103%2FS1068366614050092
This article is issued from Wikipedia - version of the Friday, April 29, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.