Thyroid disease

Thyroid disease
Classification and external resources
Specialty endocrinology, medical genetics
ICD-10 E00-E07, Q89.1-Q89.2
ICD-9-CM 240-246, 759.1-759.2
MedlinePlus 001159
MeSH D013959

A thyroid disease is a medical condition impairing the function of the thyroid. Different thyroid diseases include Hashimoto's thyroiditis, hyperthyroidism and hypothyroidism. These diseases have a large range of symptoms and affect all ages.

Diseases

Functional disorders

Imbalance in production of thyroid hormones arises from dysfunction of the thyroid gland itself, the pituitary gland, which produces thyroid-stimulating hormone (TSH), or the hypothalamus, which regulates the pituitary gland via thyrotropin-releasing hormone (TRH). Concentrations of TSH increase with age, requiring age-corrected tests.[1] Hypothyroidism affects between three and ten percent of adults, with incidence higher in women and the elderly.[2][3][4]

Hypofunction - Hypothyroidism

Hyperfunction - Hyperthyroidism

Nodular abnormalities - Goitre

Tumors

Deficiencies

Medication linked to thyroid disease includes amiodarone, lithium salts, some types of interferon and IL-2. Defiency in adults causes Myxedema

Diagnosis

Blood tests

Ultrasound

Nodules of the thyroid may or may not be cancer. Medical ultrasonography can help determine their nature because some of the characteristics of benign and malignant nodules differ. The main characteristics of a thyroid nodule on high frequency thyroid ultrasound are as follows:

Possible cancer Benign characteristics
irregular border smooth borders
hypoechoic (less echogenic than the surrounding tissue) hyperechoic
microcalcifications -
taller than wide shape on transverse study -
significant intranodular blood flow by power Doppler -
- "comet tail" artifact as sound waves bounce off intranodular colloid

Ultrasonography is not always able to separate benign from malignant nodules with complete certainty. In suspicious cases, a tissue sample is often obtained by biopsy for microscopic examination.

Radioiodine scanning and uptake

Thyroid scintigraphy, imaging of the thyroid with the aid of radioactive iodine, usually iodine-123 (123I), is performed in the nuclear medicine department of a hospital or clinic. Radioiodine collects in the thyroid gland before being excreted in the urine. While in the thyroid the radioactive emissions can be detected by a camera, producing a rough image of the shape (a radiodine scan) and tissue activity (a radioiodine uptake) of the thyroid gland.

A normal radioiodine scan shows even uptake and activity throughout the gland. Irregularity can reflect an abnormally shaped or abnormally located gland, or it can indicate that a portion of the gland is overactive or underactive, different from the rest. For example, a nodule that is overactive ("hot") to the point of suppressing the activity of the rest of the gland is usually a thyrotoxic adenoma, a surgically curable form of hyperthyroidism that is hardly ever malignant. In contrast, finding that a substantial section of the thyroid is inactive ("cold") may indicate an area of non-functioning tissue such as thyroid cancer.

The amount of radioactivity can be counted as an indicator of the metabolic activity of the gland. A normal quantitation of radioiodine uptake demonstrates that about 8 to 35% of the administered dose can be detected in the thyroid 24 hours later. Overactivity or underactivity of the gland as may occur with hypothyroidism or hyperthyroidism is usually reflected in decreased or increased radioiodine uptake. Different patterns may occur with different causes of hypo- or hyperthyroidism.

Biopsy

A medical biopsy refers to the obtaining of a tissue sample for examination under the microscope or other testing, usually to distinguish cancer from noncancerous conditions. Thyroid tissue may be obtained for biopsy by fine needle aspiration or by surgery.

Needle aspiration has the advantage of being a brief, safe, outpatient procedure that is safer and less expensive than surgery and does not leave a visible scar. Needle biopsies became widely used in the 1980s, but it was recognized that accuracy of identification of cancer was good but not perfect. The accuracy of the diagnosis depends on obtaining tissue from all of the suspicious areas of an abnormal thyroid gland. The reliability of needle aspiration is increased when sampling can be guided by ultrasound, and over the last 15 years, this has become the preferred method for thyroid biopsy in North America.

Treatment

Medical treatment

Levothyroxine is a stereoisomer of thyroxine which is degraded much slower and can be administered once daily in patients with hypothyroidism. Natural thyroid hormone from pigs is also used, especially for people who cannot tolerate the synthetic version. Graves' disease may be treated with the thioamide drugs propylthiouracil, carbimazole or methimazole, or rarely with Lugol's solution. Hyperthyroidism as well as thyroid tumors may be treated with radioactive iodine.

Percutaneous Ethanol Injections, PEI, for therapy of recurrent thyroid cysts and metastatic thyroid cancer lymph nodes is an alternative to the usual surgical method.

Surgery

Thyroid surgery is performed for a variety of reasons. A nodule or lobe of the thyroid is sometimes removed for biopsy or for the presence of an autonomously functioning adenoma causing hyperthyroidism. A large majority of the thyroid may be removed, a subtotal thyroidectomy, to treat the hyperthyroidism of Graves' disease, or to remove a goitre that is unsightly or impinges on vital structures.

A complete thyroidectomy of the entire thyroid, including associated lymph nodes, is the preferred treatment for thyroid cancer. Removal of the bulk of the thyroid gland usually produces hypothyroidism, unless the person takes thyroid hormone replacement. Consequently, individuals who have undergone a total thyroidectomy are typically placed on thyroid hormone replacement for the remainder of their lives. Higher than normal doses are often administered to prevent recurrence.

If the thyroid gland must be removed surgically, care must be taken to avoid damage to adjacent structures, the parathyroid glands and the recurrent laryngeal nerve. Both are susceptible to accidental removal and/or injury during thyroid surgery. The parathyroid glands produce parathyroid hormone (PTH), a hormone needed to maintain adequate amounts of calcium in the blood. Removal results in hypoparathyroidism and a need for supplemental calcium and vitamin D each day. In the event the blood supply to any one of the parathyroid glands is endangered through surgery, the parathyroid gland(s) involved may be re-implanted in surrounding muscle tissue. The recurrent laryngeal nerves provide motor control for all external muscles of the larynx except for the cricothyroid muscle, which also runs along the posterior thyroid. Accidental laceration of either of the two or both recurrent laryngeal nerves may cause paralysis of the vocal cords and their associated muscles, changing the voice quality.

Radioiodine therapy

Large goiters that cause symptoms but do not harbor cancer, after evaluation and biopsy of suspicious nodules, can be treated by an alternative therapy with radioiodine. The iodine uptake can be high in countries with iodine deficiency, but low in iodine sufficient countries. The 1999 release of recombinant human TSH, Thyrogen, in the USA, can boost the uptake to 50-60% allowing the therapy with Iodine 131. The gland shrinks by 50-60% but can cause hypothyroidism and rarely pain syndrome, which arises due to radiation thyroiditis. It is short lived and treated by steroids.

References

  1. Surks MI, Hollowell JG (December 2007). "Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism". J. Clin. Endocrinol. Metab. 92 (12): 4575–82. doi:10.1210/jc.2007-1499. PMID 17911171.
  2. Gharib H, Tuttle RM, Baskin HJ, Fish LH, Singer PA, McDermott MT (2004). "Subclinical thyroid dysfunction: a joint statement on management from the American Association of Clinical Endocrinologists, the American Thyroid Association, and the Endocrine Society". Endocr Pract 10 (6): 497–501. doi:10.4158/ep.10.6.497. PMID 16033723.
  3. Fatourechi V (2009). "Subclinical hypothyroidism: an update for primary care physicians". Mayo Clin. Proc. 84 (1): 65–71. doi:10.4065/84.1.65. PMC 2664572. PMID 19121255.
  4. Villar HC, Saconato H, Valente O, Atallah AN (2007). Villar, Heloisa Cerqueira Cesar Esteves, ed. "Thyroid hormone replacement for subclinical hypothyroidism". Cochrane Database Syst Rev (3): CD003419. doi:10.1002/14651858.CD003419.pub2. PMID 17636722.
  5. Giannini AJ, Malone DA, Loiselle RH, Price WA (1987). "Blunting of TSH response to TRH in chronic cocaine and phencyclidine abusers". J Clin Psychiatry 48 (1): 25–6. PMID 3100509.

Further reading

External links

This article is issued from Wikipedia - version of the Wednesday, March 30, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.