USP11

Ubiquitin specific peptidase 11
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols USP11 ; UHX1
External IDs OMIM: 300050 MGI: 2384312 HomoloGene: 31252 GeneCards: USP11 Gene
EC number 3.4.19.12
Orthologs
Species Human Mouse
Entrez 8237 236733
Ensembl ENSG00000102226 ENSMUSG00000031066
UniProt P51784 Q99K46
RefSeq (mRNA) NM_004651 NM_145628
RefSeq (protein) NP_004642 NP_663603
Location (UCSC) Chr X:
47.23 – 47.25 Mb
Chr X:
20.7 – 20.72 Mb
PubMed search

Ubiquitin carboxyl-terminal hydrolase 11 is an enzyme that in humans is encoded by the USP11 gene.[1][2]

Function

Protein ubiquitination controls many intracellular processes, including cell cycle progression, transcriptional activation, and signal transduction. This dynamic process, involving ubiquitin conjugating enzymes and deubiquitinating enzymes, adds and removes ubiquitin. Deubiquitinating enzymes are cysteine proteases that specifically cleave ubiquitin from ubiquitin-conjugated protein substrates. This gene encodes a deubiquitinating enzyme which lies in a gene cluster on chromosome Xp11.23[2]

Interactions

USP11 has been shown to interact with RANBP9.[3]

Model organisms

Model organisms have been used in the study of USP11 function. A conditional knockout mouse line called Usp11tm1(KOMP)Wtsi was generated at the Wellcome Trust Sanger Institute.[4] Male and female animals underwent a standardized phenotypic screen[5] to determine the effects of deletion.[6][7][8][9] Additional screens performed: - In-depth immunological phenotyping[10]

References

  1. Puente XS, Sánchez LM, Overall CM, López-Otín C (Jul 2003). "Human and mouse proteases: a comparative genomic approach". Nature Reviews. Genetics 4 (7): 544–58. doi:10.1038/nrg1111. PMID 12838346.
  2. 1 2 "Entrez Gene: USP11 ubiquitin specific peptidase 11".
  3. Ideguchi H, Ueda A, Tanaka M, Yang J, Tsuji T, Ohno S, Hagiwara E, Aoki A, Ishigatsubo Y (Oct 2002). "Structural and functional characterization of the USP11 deubiquitinating enzyme, which interacts with the RanGTP-associated protein RanBPM". The Biochemical Journal 367 (Pt 1): 87–95. doi:10.1042/BJ20011851. PMC 1222860. PMID 12084015.
  4. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  5. 1 2 "International Mouse Phenotyping Consortium".
  6. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  7. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  8. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  9. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
  10. 1 2 "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading


This article is issued from Wikipedia - version of the Monday, January 25, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.