Volume entropy

The volume entropy is an asymptotic invariant of a compact Riemannian manifold that measures the exponential growth rate of the volume of metric balls in its universal cover. This concept is closely related with other notions of entropy found in dynamical systems and plays an important role in differential geometry and geometric group theory. If the manifold is nonpositively curved then its volume entropy coincides with the topological entropy of the geodesic flow. It is of considerable interest in differential geometry to find the Riemannian metric on a given smooth manifold which minimizes the volume entropy, with locally symmetric spaces forming a basic class of examples.

Definition

Let (M, g) be a compact Riemannian manifold, with universal cover \tilde{M}. Choose a point \tilde{x}_0\in \tilde{M}.

The volume entropy (or asymptotic volume growth) h=h(M, g) is defined as the limit

 h(M,g) = \lim_{R \rightarrow + \infty} \frac{\log \left( \operatorname{vol} B(R) \right)}{R},

where B(R) is the ball of radius R in \tilde{M} centered at \tilde{x}_0 and vol is the Riemannian volume in the universal cover with the natural Riemannian metric.

A. Manning proved that the limit exists and does not depend on the choice of the base point. This asymptotic invariant describes the exponential growth rate of the volume of balls in the universal cover as a function of the radius.

Properties

Let X and Y be compact oriented connected n-dimensional smooth manifolds and f: Y X a continuous map of non-zero degree. If g0 is a negatively curved locally symmetric Riemannian metric on X and g is any Riemannian metric on Y then
 h^n(Y,g)\operatorname{vol}(Y,g)\geq 
|\operatorname{deg}(f)| h^n(X,g_0)\operatorname{vol}(X,g_0),
and for n 3, the equality occurs if and only if (Y,g) is locally symmetric of the same type as (X,g0) and f is homotopic to a homothetic covering (Y,g) (X,g0).

Application in differential geometry of surfaces

Katok's entropy inequality was recently exploited to obtain a tight asymptotic bound for the systolic ratio of surfaces of large genus, see systoles of surfaces.

References

This article is issued from Wikipedia - version of the Thursday, March 31, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.