Weil–Châtelet group
In arithmetic geometry, the Weil–Châtelet group or WC-group of an algebraic group such as an abelian variety A defined over a field K is the abelian group of principal homogeneous spaces for A, defined over K. Tate (1958) named it for François Châtelet (1946) who introduced it for elliptic curves, and Weil (1955), who introduced it for more general groups. It plays a basic role in the arithmetic of abelian varieties, in particular for elliptic curves, because of its connection with infinite descent.
It can be defined directly from Galois cohomology, as H1(GK,A), where GK is the absolute Galois group of K. It is of particular interest for local fields and global fields, such as algebraic number fields. For K a finite field, Schmidt (1931) proved that the Weil–Châtelet group is trivial for elliptic curves, and Lang (1956) proved that it is trivial for any algebraic group.
See also
The Tate–Shafarevich group of an abelian variety A defined over a number field K consists of the elements of the Weil–Châtelet group that become trivial in all of the completions of K.
The Selmer group, named after Ernst S. Selmer, of A with respect to an isogeny f:A→B of abelian varieties is a related group which can be defined in terms of Galois cohomology as
where Av[f] denotes the f-torsion of Av and is the local Kummer map .
References
- Cassels, John William Scott (1962), "Arithmetic on curves of genus 1. III. The Tate–Šafarevič and Selmer groups", Proceedings of the London Mathematical Society. Third Series 12: 259–296, doi:10.1112/plms/s3-12.1.259, ISSN 0024-6115, MR 0163913
- Cassels, John William Scott (1991), Lectures on elliptic curves, London Mathematical Society Student Texts 24, Cambridge University Press, ISBN 978-0-521-41517-0, MR 1144763
- Châtelet, François (1946), "Méthode galoisienne et courbes de genre un", Annales de L'Université de Lyon Sect. A. (3) 9: 40–49, MR 0020575
- Hindry, Marc; Silverman, Joseph H. (2000), Diophantine geometry: an introduction, Graduate Texts in Mathematics 201, Berlin, New York: Springer-Verlag, ISBN 978-0-387-98981-5
- Greenberg, Ralph (1994), "Iwasawa Theory and p-adic Deformation of Motives", in Serre, Jean-Pierre; Jannsen, Uwe; Kleiman, Steven L., Motives, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-1637-0
- Hazewinkel, Michiel, ed. (2001), "Weil-Châtelet group", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
- Lang, Serge (1956), "Algebraic groups over finite fields", American Journal of Mathematics 78: 555–563, doi:10.2307/2372673, ISSN 0002-9327, MR 0086367
- Lang, Serge; Tate, John (1958), "Principal homogeneous spaces over abelian varieties", American Journal of Mathematics 80: 659–684, doi:10.2307/2372778, ISSN 0002-9327, MR 0106226
- Schmidt, Friedrich Karl (1931), "Analytische Zahlentheorie in Körpern der Charakteristik p", Mathematische Zeitschrift (Springer Berlin / Heidelberg) 33: 1–32, doi:10.1007/BF01174341, ISSN 0025-5874
- Shafarevich, I. R. (1959), "The group of principal homogeneous algebraic manifolds", Doklady Akademii Nauk SSSR (in Russian) 124: 42–43, ISSN 0002-3264, MR 0106227 English translation in his collected mathematical papers
- Tate, John (1958), WC-groups over p-adic fields, Séminaire Bourbaki; 10e année: 1957/1958 13, Paris: Secrétariat Mathématique, MR 0105420
- Weil, André (1955), "On algebraic groups and homogeneous spaces", American Journal of Mathematics 77: 493–512, doi:10.2307/2372637, ISSN 0002-9327, MR 0074084