Brunner syndrome

Brunner syndrome
Classification and external resources
OMIM 300615
DiseasesDB 32391

Brunner syndrome is a rare genetic disorder associated with a mutation in the MAOA gene. It is characterized by lower than average IQ (typically about 85), problematic impulsive behavior (such as arson, hypersexuality and violence), sleep disorders and mood swings.[1][2] It was identified in fourteen males from one family in 1993.[1][3] It has since been discovered in two additional families.[4]

Causes

Brunner syndrome is caused by a monoamine oxidase A (MAOA) deficiency, which leads to an excess of monoamines in the brain, such as serotonin, dopamine, and norepinephrine (noradrenaline). In both mice and humans, a mutation was located on the eighth exon of the MAO-A gene, which created a dysfunctional MAO-A gene.[5][6] The regular function of MAO-A, breaking down monoamines, is disrupted, and monoamines build up within the brain. Mice that lacked a functional MAO-A gene displayed higher levels of aggression, in comparison to mice with a functional MAO-A gene.[6]

History

Brunner Syndrome was described in 1993 by H.G. Brunner et al upon the discovery of a particular genetic defect in male members of a large Dutch family.[5] Brunner found that all of the male family members with this defect reacted aggressively when angry, fearful, or frustrated. The defect discovered was later found to be a mutation in the gene that codes for monoamine oxidase A (MAOA gene).[5] Brunner said that an "MAO-A deficiency is associated with a recognizable behavioural phenotype that included disturbed regulation of impulsive aggression".[5]

A letter published by Hebebrand and Klug (1995)[7] criticized Brunner's findings for not using strict DSM criteria.

Society and culture

Brunner's findings have been used to argue that genetics, rather than decision-making processes, can cause criminal activity.[8] Evidence supporting the genetic defense stems from both Brunner's findings and a series of studies on mice.[9] To prove the correlation between MAO-A deficiency and aggression in courts, it is often contended that individuals cannot be held accountable for their genes, and as a result, should not be held responsible for their dispositions and resulting actions.[8][9]

References

  1. 1 2 Hunter P (September 2010). "The psycho gene". EMBO Rep. 11 (9): 667–9. doi:10.1038/embor.2010.122. PMC 2933872. PMID 20805840.
  2. Online 'Mendelian Inheritance in Man' (OMIM) 300615
  3. Brunner HG, Nelen MR, van Zandvoort P, Abeling NGGM, van Gennip AH, Wolters EC, Kuiper MA, Ropers HH, van Oost BA (June 1993). "X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism". Am. J. Hum. Genet. 52 (6): 1032–9. PMC 1682278. PMID 8503438.
  4. Piton A, Redin C, Mandel JL (August 2013). "XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing". Am. J. Hum. Genet. 93 (2): 368–83. doi:10.1016/j.ajhg.2013.06.013. PMC 3738825. PMID 23871722.
  5. 1 2 3 4 Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (October 1993). "Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A". Science 262 (5133): 578–80. doi:10.1126/science.8211186. PMID 8211186.
  6. 1 2 Scott, AL; Bortolato, M; Chen, K; Shih, JC (2008-05-07). "Novel monoamine oxidase A knock out mice with human-like spontaneous mutation.". NeuroReport 19 (7): 739–43. doi:10.1097/WNR.0b013e3282fd6e88. PMC 3435113. PMID 18418249.
  7. Hebebrand J, Klug B (September 1995). "Specification of the phenotype required for men with monoamine oxidase type A deficiency". Hum. Genet. 96 (3): 372–6. doi:10.1007/BF00210430. PMID 7649563.
  8. 1 2 Halwani S, Krupp DB (2004). "The genetic defence: the impact of genetics on the concept of criminal responsibility". Health Law J 12: 35–70. PMID 16539076.
  9. 1 2 Baker LA, Bezdjian S, Raine A (2006). "Behavioral genetics: the science of antisocial behavior". Law Contemp Probl 69 (1-2): 7–46. PMC 2174903. PMID 18176636.
This article is issued from Wikipedia - version of the Thursday, March 17, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.