Digital Addressable Lighting Interface
International standard | IEC 60929 and IEC 6238 |
---|---|
Developed by | Activity Group DALI |
Introduced | Early 1990s |
Industry | lighting |
Type | lighting control | ||
---|---|---|---|
Superseded | 0-10 V lighting control | ||
General specifications | |||
Hot pluggable | Yes | ||
External | Yes | ||
Cable | mains-rated, with 600 V isolation, separate or part of power cable | ||
Pins | 2 | ||
Connector | 1 | ||
Electrical | |||
Signal | 16V DC | ||
Max. voltage | 22V DC | ||
Max. current | 250mA | ||
Data | |||
Width | 30bit/s | ||
Bitrate | 1200bit/s | ||
Protocol | asynchronous, half-duplex, serial protocol over a two-wire bus | ||
Pin out | |||
Pin 1 | +DALI bus | ||
Pin 2 | -DALI bus |
IEC 60929 and IEC 62386 are technical standards for network-based systems that control lighting in building automation. They were established as a successor for 0-10 V lighting control systems, and as an open standard alternative to Digital Signal Interface (DSI), on which it is based. IEC 60929 is the first version of the standard and will be withdrawn by 23 June 2014. Members of the AG DALI are allowed to use the Digital Addressable Lighting Interface (DALI) trademark on devices that are compliant with the current standard. Non AG DALI members can apply for a fee bearing license. It was founded by Philips lighting in 1984.
DALI (Digital Addressable Lighting Interface) is a data protocol and transport mechanism that was jointly developed and specified by several manufacturers of lighting equipment. The common platform of DALI enables equipment from different manufacturers to be connected together.
Technical
DALI network consists of a controller and one or more lighting devices (e.g., electrical ballasts, LED drivers and dimmers) that have DALI interfaces. The controller can monitor and control each light by means of a bi-directional data exchange. The DALI protocol permits devices to be individually addressed and it also incorporates Group and Scene broadcast messages to simultaneously address multiple devices[1] (e.g., "Group 1 goto 100%" or "Recall Scene 1").
Each lighting device is assigned a unique static address in the numeric range 0 to 63, making possible up to 64 devices in a standalone system. Addresses may be arbitrarily assigned and devices need not be mapped to contiguous addresses (gaps may exist in the address map). A system consisting of multiple DALI gateways can be used to address more than 64 devices. Data is transferred between controller and devices by means of an asynchronous, half-duplex, serial protocol over a two-wire bus, with a fixed data transfer rate of 1200 bit/s.
DALI requires a single pair of wires to form the bus for communication to all devices on a single DALI network. The network can be arranged in a bus or star topology, or a combination of these. The DALI System is not classified as SELV (Separated Extra Low Voltage) and therefore may be run next to the mains cables or within a multi-core cable that includes mains power. The DALI data is transmitted using manchester encoding and has a high signal to noise ratio which enables reliable communications in the presence of a large amount of electrical noise. DALI employs a diode bridge in the interface circuitry so that devices can be wired without regard for polarity. Signal level are defined as ±4.5 V for "0" and 0±6.5 V for "1". 16[2] Central interface power maximum is 250 mA and 2 mA per unit.[2] The network cable is required to be mains-rated, with 600 V isolation and at least a 1 mm cross-section, with a maximum drop of 2 volts along the cable (max 300 m).[2] Signal interface is galvanically separated and doesn't need any termination resistors.[2] DALI is a step on from the DSI protocol, which is used by HF fluorescent ballasts. One of the main advantages that DALI has over earlier systems is that each device on a segment of data cable can be separately addressed, as DSI and 1-10V devices are not separately addressable and can only be controlled as a group. The net result is that to achieve similar control functionally, DALI requires less complex (and therefore less expensive) wiring topology than DSI or 1-10V devices.
DALI devices include LED drivers, fluorescent HF ballasts, low voltage transformers, PE cells, motion detectors, wall switches and gateways to other protocols. There can be up to 64 DALI devices on a single DALI network. Sites requiring more than 64 devices are implemented by having multiple separate DALI networks, each with up to 64 devices. These separate networks are then linked together with DALI gateways and a data backbone running a high level protocol, such as Dynalite’s DyNet.
Earlier generations of DALI devices stored configuration data in EEPROM, which was problematic due to the limited number of write cycles supported by EEPROMs. In current generations of DALI devices, RAM is used in preference to EEPROM during normal operation, which significantly reduces the number of EEPROM writes and thus extends their lifetimes. This use of RAM, however, is patented and therefore mandates payment of a license fee.
DALI requires 2 wires to devices, in addition to mains cables if required. These wires are not polarity dependent which makes it simple to install. These wires are at ELV (Extra Low Voltage) potential and are looped to all devices. Some devices, such as HF ballasts are mains powered, and only have functional isolation between the mains and the DALI control. This means that even though the DALI control cable operates at ELV potential, it must be treated as if it were at mains potential. A DALI network requires a 24V DC 250 mA power supply to operate. This voltage appears on the data cables and can be used to supply power to peripherals that require it, such as motion detectors. A separate power supply can be used, although some manufacturers provide DALI gateways with an integrated power supply.
Method of control
A DALI device, such as a HF fluorescent ballast, can be controlled individually via its short address. In addition to this method of control, DALI devices can be arranged into groups in which all devices of the same Group can interact with each other. For example, a room with 4 ballasts can be changed from off to on in three common ways:
Method 1, Single Address
Using the Short Address, e.g. sending the following DALI messages:
- DALI Short Address 1 go to 100%
- DALI Short Address 2 go to 100%
- DALI Short Address 3 go to 100%
- DALI Short Address 4 go to 100%
This method has the advantage of not relying on the limited number of scenes available in each ballast, or having programmed each ballast with the required group numbers and scene information. The fade rate of the transition can be chosen on the fly. This method can have an undesirable side effect called "Mexican Wave" when a single large room such as an auditorium contains many ballasts, due to network latency of the comparatively slow 1200 baud rate of DALI. For example, a transition from all on to all off may result in a visible delay between the first and last ballasts switching off. This issue is normally not a problem in rooms with smaller numbers of ballasts.
Method 2, Group Command
Using the DALI Group previously defined for the ballasts in the room, e.g.:
- DALI Group address 1 go to 100%
This method has the advantage of being immune to the “Mexican Wave” effect as described above. This method has the disadvantage of requiring each ballast to be programmed with the required group numbers and scene information, and has a fixed fade rate which is pre set at the time of commissioning.
Method 3, Broadcast command
Using the DALI Broadcast command all, every ballasts will change to that level, e.g.:
- DALI Broadcast go to 50%
Brightness control
The DALI protocol provides 256 levels of brightness between off and 100%, which is translated to a ballast power level via a logarithmic dimming curve. This curve gives larger increments in brightness at high dim levels and smaller increments at low dim levels. This is an attempt to have a dimming curve which appears linear to the human eye. Sometimes issues arise when different fixtures are used together, such as DALI fluorescent ballasts, DALI ELV Incandescent transformers and phase control dimmed fixtures. When different fixtures are operated together it is often apparent to the eye that the dimming curves do not match, especially at lower levels, due to the lower end distribution of the DALI dimming curve.
Commands and Queries
Common commands and queries specified by the DALI standard[3] [4]
Command | Addressing Mode | Details | Read\Write |
---|---|---|---|
Set Value | Broadcast / Groups / Channels | Send direct level values | R/W |
Off | Broadcast / Groups / Channels | Send the off command | R/W |
Up | Broadcast / Groups / Channels | Increase value by 1 until Max Level, honouring the fade time | W |
Down | Broadcast / Groups / Channels | Decrease value by 1 until Min Level, honouring the fade time | W |
Step Up | Broadcast / Groups / Channels | Increase value by 1 until Max Level, ignoring the fade time | W |
Step Down | Broadcast / Groups / Channels | Decrease value by 1 until Min Level, ignoring the fade time | W |
Recall Max Level | Broadcast / Groups / Channels | Output Max Value | R/W |
Recall Min Level | Broadcast / Groups / Channels | Output Min Value | R/W |
Step Down and Off | Broadcast / Groups / Channels | Decrease value by 1 /Turn off | W |
On and Step Up | Broadcast / Groups / Channels | Turn on / Increase by 1 | W |
Go to Scene x | Broadcast / Groups / Channels | Go to scene 1 - 16 | W |
Status | Channels | "OK, Ballast" "OK, Lamp Failure" "Off, Lamp Power On" "Off, Limit Error" "Terminate Fading" "No, Reset State" "Missing Short Address" "Power Failure" | R |
Device | Channels | Status of the Device | R |
Lamp Power On | Channels | Is the Lamp on? | R |
Version Number | Channels | Replies: Current Version | R |
Device Type | Channels | Replies with the device type | R |
Actual Level | Channels | Query Current Level | R |
Max Level | Channels | The Max level the Device can go to | R/W |
Min Level | Channels | The Min level the Device can go to | R/W |
Power On Level | Channels | Lamp output with voltage recovery | R/W |
System Failure Level | Channels | Lamp output in the event of system malfunction (e.g., interrupted DALI line) | R/W |
Scene Levels | Channels | Sets the leveles for Scene. | R/W |
Fade time | Channels | Time in seconds for fading from the current brightness value to the new brightness value | R/W |
Fade rate | Channels | Fade steps per second that are performed in response to an indirect fade command (Up and Down commands) | R/W |
Wireless extension
A wireless extension to DALI is available that enables DALI networks to communicate via wireless, radio frequency communication.[6]
Standardization
The light output from dimmer units are adjusted with an algorithm adapted to eye sensitivity such that a uniform brightness is achieved between units from different manufacturers.[2]
References
- ↑ "Communication in building automation". Siemens Building Technologies. Siemens Building Technologies. 2013. Retrieved 12 July 2013.
- 1 2 3 4 5 dali-ag.org "Digital Addressable Lighting Interface" Check
|url=
value (help) (PDF). DALI. DALI AG, Activity Group, ZVEI-Division Luminaires. September 2001. Retrieved 12 July 2013. - ↑ Artistic Licence. "The DALI Guide" (PDF). Artistic Licence. Retrieved 1 March 2016.
- ↑ Wago. "DALI/DSI Master Module 750-641 manual" (PDF). Wago. Wago. Retrieved 1 March 2016.
- ↑ "WAGO-Software WAGO DALI Configurator" (PDF). Wago. Wago. Retrieved 1 March 2016.
- ↑ "Wireless extension for DALI". Virtual Extension. Virtual Extension. 2014. Retrieved 3 August 2014.