Erythropoietic protoporphyria

Erythropoietic protoporphyria

Chronic skin lesions of EPP
Classification and external resources
Specialty endocrinology
ICD-10 E80.0 (ILDS E80.010)
ICD-9-CM 277.1
OMIM 177000
DiseasesDB 4484
eMedicine derm/473
MeSH C06.552.830.812
Orphanet 79278

Erythropoietic protoporphyria (EPP) is a form of porphyria, which varies in severity and can be very painful. It arises from a deficiency in the enzyme ferrochelatase, leading to abnormally high levels of protoporphyrin in the erythrocytes, plasma, skin and liver.[1] The severity varies significantly from individual to individual.

A clinically similar form of porphyria, known as X-Linked dominant protoporphyria, was identified in 2008.[2]

Epidemiology

Case reports suggest that EPP is prevalent globally. The prevalence has been estimated somewhere between 1 in 75,000 and 1 in 200,000[3] however it has been noted that the prevalence of EPP may be increasing due to a better understanding of the disease and improved diagnosis.[4] An estimated 5,000-10,000 individuals worldwide have EPP.[5] EPP is considered the most common form of porphyria in children.[6] The prevalence in Sweden has been published as 1:180,000.[7]

Genetics

Most cases of EPP are results of inborn errors of metabolism[1] but the metabolic defect in some patients may be acquired.[8] Mutation of the gene that encodes for ferrochelatase in the long arm of chromosome 18 is found in majority of the cases. Ferrochelatase (FECH) catalyzes the insertion of ferrous iron into the protoporphyrin IX ring to form heme. EPP exhibits both recessive and dominant patterns of inheritance and a high degree of allelic heterogeneity with incomplete penetrance. Most heterozygotes are asymptomatic. Symptoms do not occur unless FECH activity is less than 30% of normal, but such low levels are not present in a majority of patients.[9]

Pathophysiology

Cells which synthesize heme are predominantly erythroblasts/reticulocytes in the bone marrow (80%) and hepatocytes (20%). Deficiency of FECH results in increased release of protoporphyrin, which binds to albumin in plasma and subsequently undergoes hepatic extraction. Normally, most protoporphyrin in hepatocytes is secreted into bile; the remainder undergoes transformation into heme. Some protoporphyrin in bile is returned to the liver as a consequence of the enterohepatic circulation; the remaining protoporphyrin in the intestine undergoes fecal excretion. Protoporphyrin is insoluble and hence unavailable for renal excretion. In EPP, subnormal biotransformation of protoporphyrin into heme results in accumulation of protoporphyrin in hepatocytes.[10]

Since FECH deficiency is associated with increased concentrations of protoporphyrin in erythrocytes, plasma, skin and liver, retention of protoporphyrin in skin predisposes to acute photosensitivity. As a result of absorption of ultraviolet light (that is, wavelengths less than 400 nm) by protoporphyrin in plasma and erythrocytes when blood circulates through the dermal vessels, free radicals are formed, erythrocytes become unstable and injury to the skin is induced.[11]

A significant increase in the hepatobiliary excretion on protoporphyrin can damage the liver through both cholestatic phenomena and oxidative stress[12] predisposing to hepatobiliary disease of varying degrees of severity[13][14]

Presentation

Acute photosensitivity reaction in EPP.

EPP usually presents in childhood with the commonest mode of presentation as acute photosensitivity of the skin. It affects areas exposed to the sun and tends to be intractable. A few minutes of exposure to the sun induces pruritus, erythema, swelling and pain. Longer periods of exposure may induce second degree burns. After repetitive exposure, patients may present with lichenification, hypopigmentation, hyperpigmentation and scarring of the skin.[15][16]

EPP usually first presents in childhood, and most often affects the face and the upper surfaces of the arms, hands, and feet and the exposed surfaces of the legs. Most patients, if the EPP is not as severe, manifest symptoms with onset of puberty when the male and female hormone levels elevate during sexual development and maintenance. More severe EPP can manifest in infancy. Exposure to even indoor light sources can cause the reaction, and the infant, if clothed only in a diaper, will break out everywhere except under the diaper. EPP can be triggered through exposure to sun even though the patient is behind glass. Even the UV emissions from arc welding with the use of full protective mask have been known to trigger EPP. EPP can also manifest between the ages of 3 and 6.

Prolonged exposure to the sun can lead to edema of the hands, face, and feet, rarely with blistering and petechiae. Skin thickening can sometimes occur over time.

People with EPP are also at increased risk to develop gallstones.[17] One study has noted that EPP patients suffer from vitamin D deficiency.[18]

Liver failure in EPP

Protoporphyrin accumulates to toxic levels in the liverIn a 5-20% of EPP patient leading to liver failure. The spectrum of hepatobiliary disease associated with EPP is wide. It includes cholelithiasis, mild parenchymal liver disease, progressive hepatocellular disease and end-stage liver disease.[15]

A lack of diagnostic markers for liver failure makes it difficult to predict which patients may experience liver failure, and the mechanism of liver failure is poorly understood. A retrospective European study identified 31 EPP patients receiving a liver transplant between 1983 and 2008, with phototoxic reactions in 25% of patients who were unprotected by surgical light filters. The same study noted a 69% recurrence of the disease in the grafted organ. Five UK liver transplants for EPP have been identified between 1987 and 2009.

Frequent liver testing is recommended in EPP patients where no effective therapy has been identified to manage liver failure to date.

EPP and pregnancy

EPP photosensitivity symptoms are reported to lessen in some female patients during pregnancy and menstruation, although this phenomenon is not consistent, and the mechanism is not understood.[19]

Diagnosis

EPP is generally suspected by the presence of acute photosensitivity of the skin and can be confirmed by detection of a plasmatic fluorescence peak at 634 nm. It is also useful to find increased levels of protoporphyrin in feces and the demonstration of an excess of free protoporphyrin in erythrocytes.[20]

Screening for FECH mutation on one allele or aminolevulinic acid synthase 2 gain-of-function mutation in selected family members may be useful, especially in genetic counseling.

Liver biopsy confirms hepatic disease in EPP by the presence of protoporphyrin deposits in the hepatocytes that can be observed as a brown pigment within the biliary canaliculi and the portal macrophages. Macroscopically, the cirrhotic liver can have a black color due to protoporphyrin deposits. Using polarized light the characteristic Maltese cross shape of birefringent crystalline pigment deposits is found. The examination of liver tissue under a Wood’s lamp reveals a red fluorescence due to protoporphyrin. Liver biopsy is not helpful for estimation of prognosis of liver disease.[13]

Treatment and prognosis

There is no cure for this disorder; however, symptoms can usually be managed by limiting exposure to daytime sun and fluorescent lights. Protective clothing is also very helpful. Since the photosensitivity results from light in the visible spectrum, most sunscreens (with the exception of light-reflecting substances such as zinc oxide) are of little use. Some individuals may decrease their sun sensitivity with daily doses of beta carotene, though a recent meta analysis of carotene treatment has called its effectiveness into question.[21] Some patients gradually build a protective layer of melanin by regularly exposing themselves for short times to ultraviolet radiation.

Window films which block UV and visible light up to 450 nm can provide relief from symptoms if applied to the patient's automobile and home windows.

EPP is considered one of the least severe of the porphyrias. Unless there is liver failure, it is not a life-threatening disease.

Ursodeoxycholic acid is a bile acid that is administered to promote biliary secretion of protoporphyrin. Results of its use in EPP are controversial. However, it is known to alter the composition of bile, to protect hepatocytes from the cytotoxic effect of hydrophobic bile acids, and to stimulate biliary secretion by several distinct mechanisms.[22][23]

Hematin appears to reduce excess protoporphyrin production in the bone marrow. It has been administered to patients with EPP (3–4 mg/kg iv) who develop a crisis after liver transplantation.[24]

Plasmapheresis can aso decrease the levels of protoporphyrin in plasma however its role in acute episode can controversial.[25]

Cholestyramine is an orally administered resin which reduces circulating levels of protoporphyrin by binding to protoporphyrin in the intestine and, hence, interrupting the enterohepatic circulation. It is usually used in combination with other treatment approaches.[26]

Activated charcoal like cholestyramine, binds to protoporphyrin in the intestine and prevents its absorption. It is cheap and readily available. It seems to be effective in reducing circulating protoporphyrin levels.[27]

In December 2014 Scenesse (afamelanotide), developed by Australian-based Clinuvel Pharmaceuticals, received authorization from the European Commission as a treatment for the prevention of phototoxicity in adult patients with EPP.[28]

Bone marrow transplantation, liver transplantation, N-acetyl cycteine, extracorporeal albumin dialysis, parenteral iron and transfusion of erythrocytes are alternative plans for treatment of EEP.

History

Erythropoietic protoporphyria was first described in 1953 by Kosenow and Treibs[29] and completed in 1960 by Magnus et al. at the St John's Institute of Dermatology in London.[30]

Popular culture

In the 9th episode of season 3 of House entitled "Finding Judas", the primary patient is a young girl who is ultimately diagnosed with erythropoietic protoporphyria.

In series 14 episode 26 of Casualty entitled Seize the Night, one of the patients admitted to the department was a young girl who had erythropoietic protoporphyria. She got brought in after being hit by a car.

The June 14, 2015 episode of Dateline NBC entitled "Out of the Shadows" was devoted to the topic of children with erythropoietic protoporphyria.

See also

References

  1. 1 2 Casanova-González, María José; Trapero-Marugán, María; Jones, E. Anthony; Moreno-Otero, Ricardo (2010-09-28). "Liver disease and erythropoietic protoporphyria: a concise review". World Journal of Gastroenterology 16 (36): 4526–4531. ISSN 2219-2840. PMC 2945483. PMID 20857522.
  2. Seager, M. J.; Whatley, S. D.; Anstey, A. V.; Millard, T. P. (2014). "X-linked dominant protoporphyria: A new porphyria". Clinical and Experimental Dermatology 39 (1): 35–7. doi:10.1111/ced.12202. PMID 24131146.
  3. Arceci, Robert.; Hann, Ian M.; Smith, Owen P. (2006). Pediatric hematolog. Malden, Mass.: Blackwell Pub. ISBN 978-1-4051-3400-2.
  4. Elder, George; Harper, Pauline; Badminton, Michael; Sandberg, Sverre; Deybach, Jean-Charles (2012). "The incidence of inherited porphyrias in Europe". Journal of Inherited Metabolic Disease 36 (5): 849–57. doi:10.1007/s10545-012-9544-4. PMID 23114748.
  5. http://www.clinuvel.com/skin-conditions/rare-skin-conditions/erythropoietic-protoporphyria[]
  6. Michaels, BD; Del Rosso, JQ; Mobini, N; Michaels, JR (2010). "Erythropoietic protoporphyria: A case report and literature review". The Journal of clinical and aesthetic dermatology 3 (7): 44–8. PMC 2921755. PMID 20725556.
  7. Wahlin, S.; Floderus, Y.; Stål, P.; Harper, P. (2011). "Erythropoietic protoporphyria in Sweden: Demographic, clinical, biochemical and genetic characteristics". Journal of Internal Medicine 269 (3): 278–88. doi:10.1111/j.1365-2796.2010.02236.x. PMID 20412370.
  8. Blagojevic, Daniel; Schenk, Thomas; Haas, Oskar; Zierhofer, Brigitte; Konnaris, Christophoros; Trautinger, Franz (2009). "Acquired erythropoietic protoporphyria". Annals of Hematology 89 (7): 743–4. doi:10.1007/s00277-009-0859-7. PMID 19902211.
  9. Kong, Xiao-Fei; Ye, Jing; Gao, De-Yong; Gong, Qi-Ming; Zhang, Dong-Hua; Lu, Zhi-Meng; Lu, Yi-Ming; Zhang, Xin-Xin (2008-02-01). "Identification of a ferrochelatase mutation in a Chinese family with erythropoietic protoporphyria". Journal of Hepatology 48 (2): 375–379. doi:10.1016/j.jhep.2007.09.013. ISSN 0168-8278. PMID 18160121.
  10. Holme, S. Alexander; Worwood, Mark; Anstey, Alexander V.; Elder, George H.; Badminton, Michael N. (2007-12-01). "Erythropoiesis and iron metabolism in dominant erythropoietic protoporphyria". Blood 110 (12): 4108–4110. doi:10.1182/blood-2007-04-088120. ISSN 0006-4971. PMID 17804693.
  11. Tsuboi, Hiromi; Yonemoto, Kohzoh; Katsuoka, Kensei (2007-11-01). "Erythropoietic protoporphyria with eye complications". The Journal of Dermatology 34 (11): 790–794. doi:10.1111/j.1346-8138.2007.00386.x. ISSN 0385-2407. PMID 17973823.
  12. Holme, S. Alexander; Worwood, Mark; Anstey, Alexander V.; Elder, George H.; Badminton, Michael N. (2007-12-01). "Erythropoiesis and iron metabolism in dominant erythropoietic protoporphyria". Blood 110 (12): 4108–4110. doi:10.1182/blood-2007-04-088120. ISSN 0006-4971. PMID 17804693.
  13. 1 2 Lecha, Mario; Puy, Hervé; Deybach, Jean-Charles (2009-01-01). "Erythropoietic protoporphyria". Orphanet Journal of Rare Diseases 4: 19. doi:10.1186/1750-1172-4-19. ISSN 1750-1172. PMC 2747912. PMID 19744342.
  14. Bruguera, M.; Herrero, C. (2005-12-01). "[Liver disease in erythropoietic protoporphyria]". Gastroenterología Y Hepatología 28 (10): 632–636. ISSN 0210-5705. PMID 16373015.
  15. 1 2 Tsuboi, Hiromi; Yonemoto, Kohzoh; Katsuoka, Kensei (2007-11-01). "Erythropoietic protoporphyria with eye complications". The Journal of Dermatology 34 (11): 790–794. doi:10.1111/j.1346-8138.2007.00386.x. ISSN 0385-2407. PMID 17973823.
  16. Poh-Fitzpatrick, M. B. (1986-06-01). "Molecular and cellular mechanisms of porphyrin photosensitization". Photo-Dermatology 3 (3): 148–157. ISSN 0108-9684. PMID 3529055.
  17. 12-160d. at Merck Manual of Diagnosis and Therapy Home Edition
  18. Spelt, JM; De Rooij, FW; Wilson, JH; Zandbergen, AA (2010). "Vitamin D deficiency in patients with erythropoietic protoporphyria". Journal of Inherited Metabolic Disease. 33 Suppl 3: S1–4. doi:10.1007/s10545-008-1037-0. PMID 24137761.
  19. Wahlin, S.; Marschall, H.-U.; Fischler, B. (2013). "Maternal and fetal outcome in Swedish women with erythropoietic protoporphyria". British Journal of Dermatology 168 (6): 1311–5. doi:10.1111/bjd.12242. PMID 23738640.
  20. Anstey, A. V.; Hift, R. J. (2007-07-01). "Liver disease in erythropoietic protoporphyria: insights and implications for management". Gut 56 (7): 1009–1018. doi:10.1136/gut.2006.097576. ISSN 0017-5749. PMC 1994365. PMID 17360790.
  21. Minder, EI; Schneider-Yin, X; Steurer, J; Bachmann, LM (2009). "A systematic review of treatment options for dermal photosensitivity in erythropoietic protoporphyria". Cellular and molecular biology 55 (1): 84–97. PMID 19268006.
  22. Pirlich, M.; Lochs, H.; Schmidt, H. H. (2001-12-01). "Liver cirrhosis in erythropoietic protoporphyria: improvement of liver function with ursodeoxycholic acid". The American Journal of Gastroenterology 96 (12): 3468–3469. doi:10.1111/j.1572-0241.2001.05363.x. ISSN 0002-9270. PMID 11774991.
  23. Paumgartner, Gustav; Beuers, Ulrich (2002-09-01). "Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited". Hepatology (Baltimore, Md.) 36 (3): 525–531. doi:10.1053/jhep.2002.36088. ISSN 0270-9139. PMID 12198643.
  24. Potter, C.; Tolaymat, N.; Bobo, R.; Sharp, H.; Rank, J.; Bloomer, J. (1996-11-01). "Hematin therapy in children with protoporphyric liver disease". Journal of Pediatric Gastroenterology and Nutrition 23 (4): 402–407. ISSN 0277-2116. PMID 8956175.
  25. Tung, B. Y.; Farrell, F. J.; McCashland, T. M.; Gish, R. G.; Bacon, B. R.; Keeffe, E. B.; Kowdley, K. V. (1999-09-01). "Long-term follow-up after liver transplantation in patients with hepatic iron overload". Liver Transplantation and Surgery: Official Publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society 5 (5): 369–374. doi:10.1002/lt.500050503. ISSN 1074-3022. PMID 10477837.
  26. McCullough, A. J.; Barron, D.; Mullen, K. D.; Petrelli, M.; Park, M. C.; Mukhtar, H.; Bickers, D. R. (1988-01-01). "Fecal protoporphyrin excretion in erythropoietic protoporphyria: effect of cholestyramine and bile acid feeding". Gastroenterology 94 (1): 177–181. ISSN 0016-5085. PMID 3335288.
  27. Gorchein, A.; Foster, G. R. (1999-03-01). "Liver failure in protoporphyria: long-term treatment with oral charcoal". Hepatology (Baltimore, Md.) 29 (3): 995–996. doi:10.1002/hep.510290314. ISSN 0270-9139. PMID 10189233.
  28. "Community register of medicinal products for human use". http://ec.europa.eu. European Commission. Retrieved 24 December 2014. External link in |website= (help)
  29. Kosenow, W; Treibs, A (1953). "Light hypersensitivity and porphyrinemia". Zeitschrift für Kinderheilkunde 73 (1): 82–92. doi:10.1007/BF00438257. PMID 13103364.
  30. Magnus, I; Jarrett, A; Prankerd, TA; Rimington, C (1961). "Erythropoietic protoporphyria. A new porphyria syndrome with solar urticaria due to protoporphyrinæmia". The Lancet 278 (7200): 448–51. doi:10.1016/S0140-6736(61)92427-8. PMID 13765301.

External links

This article is issued from Wikipedia - version of the Monday, April 18, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.