Fish ladder
A fish ladder, also known as a fishway, fish pass or fish steps, is a structure on or around artificial and natural barriers (such as dams, locks and waterfalls) to facilitate diadromous fishes' natural migration.[1] Most fishways enable fish to pass around the barriers by swimming and leaping up a series of relatively low steps (hence the term ladder) into the waters on the other side. The velocity of water falling over the steps has to be great enough to attract the fish to the ladder, but it cannot be so great that it washes fish back downstream or exhausts them to the point of inability to continue their journey upriver.
History
Written reports of rough fishways date to 17th-century France, where bundles of branches were used to create steps in steep channels to bypass obstructions. A version was patented in 1837 by Richard McFarlan of Bathurst, New Brunswick, Canada, who designed a fishway to bypass a dam at his water-powered lumber mill.[2] In 1852–1854, the Ballisodare Fish Pass was built in County Sligo in Ireland to draw salmon into a river that had not supported a fishery. In 1880, the first fish ladder was built in Rhode Island, United States, on the Pawtuxet Falls Dam. The ladder was removed in 1924, when the City of Providence replaced the wood dam with a concrete one. Concrete ladders are not always an improvement – the electric field-sensitive organs of the paddlefish are overloaded in the proximity of the rebar and other metal used in concrete construction, preventing them from gaining access to their spawning grounds and contributing to a catastrophic decline in their numbers.
As the Industrial Age advanced, dams and other river obstructions became larger and more common, leading to the need for effective fish by-passes.[3]
Types
There are six main types of fishways:
- Pool and weir
- Baffle fishway (Denil, Larinier, Alaskan Steeppass, or other baffle configuration)
- Fish elevator
- Rock-ramp fishway
- Vertical-slot fish passage
- Fish siphon
A pool and weir is one of the oldest styles of fish ladders. It uses a series of small dams and pools of regular length to create a long, sloping channel for fish to travel around the obstruction. The channel acts as a fixed lock to gradually step down the water level; to head upstream, fish must jump over from box to box in the ladder.
A baffle fishway uses a series of symmetrical close-spaced baffles in a channel to redirect the flow of water, allowing fish to swim around the barrier. Baffle fishways need not have resting areas, although pools can be included to provide a resting area or to reduce the velocity of the flow. Such fishways can be built with switchbacks to minimize the space needed for their construction. Baffles come in variety of designs. The original design for a Denil fishway was developed in 1909 by a Belgian scientist, G. Denil; it has since been adjusted and adapted in many ways. The Alaskan Steeppass, for example, is a modular prefabricated Denil-fishway variant originally designed for remote areas of Alaska.
A fish elevator or fish lift, as its name implies, breaks with the ladder design by providing a sort of elevator to carry fish over a barrier. It is well suited to tall barriers. With a fish elevator, fish swim into a collection area at the base of the obstruction. When enough fish accumulate in the collection area, they are nudged into a hopper that carries them into a flume that empties into the river above the barrier.
On the Connecticut River, for example, two fish elevators lift up to 500 fish at a time, 52 feet (15.85 m), to clear the Holyoke Dam. In 2013, the elevator carried over 400,000 fish.[4]
A rock-ramp fishway uses large rocks and timbers to create pools and small falls that mimic natural structures. Because of the length of the channel needed for the ladder, such structures are most appropriate for relatively short barriers. They have a significant advantage in that they can provide fish spawning habitat.[5]
A vertical-slot fish passage is similar to a pool-and-weir system, except that each "dam" has a narrow slot in it near the channel wall. This allows fish to swim upstream without leaping over an obstacle. Vertical-slot fish passages also tend to handle reasonably well the seasonal fluctuation in water levels on each side of the barrier.
A Fish Siphon allows the pass to be installed parallel to a water course and can be used to link two watercourses. The pass utilises a syphon effect to regulate its flow. This style is particularly favoured to aid flood defence
-
John Day Dam fish ladder on the Columbia River, United States
-
Fish elevator
-
Fish ladder in Meuse River the Netherlands
-
Fish ladder in North Vancouver, Canada
-
Detail of fish ladder in Uppsala, Sweden
-
Detail of fish ladder on the River Dart in England.
-
At the Charles River Dam near Boston, United States
-
Seasonal ladder at the Camp Pico Blanco on the Little Sur River, United States
Effectiveness
Fish ladders have a mixed record of effectiveness. They vary in effectiveness for different types of species, with one study showing that only three percent of American Shad make it through all the fish ladders on the way to their spawning ground.[6] Effectiveness depends on the fish species' swimming ability, and how the fish moves up and downstream. A fish passage that is designed to allow fish to pass upstream may not allow passage downstream, for instance.[7] Though fish passages do not always work to protect affected species, not including any fish passage ensures that they cannot migrate at all.[6]
See also
Notes
- ↑ "What is a Fish Ladder?". Michigan: Michigan Department of Natural Resources. Retrieved 27 April 2012.
- ↑ Mario Theriault, Great Maritme Inventions 1833–1950, Goose Lane, 2001, p. 45
- ↑ Office Of Technology Assessment Washington DC (1995) Fish passage technologies : protection at hydropower facilities Diana Publishing, ISBN 1-4289-2016-1.
- ↑ "2013 Connecticut River Migratory Fish". http://www.fws.gov/r5crc/index.html. United States Fish and Wildlife Service. Retrieved 8 September 2014. External link in
|website=
(help) - ↑ Luther P. Aadland (2010). Reconnecting Rivers: Natural Channel Design in Dam Removals and Fish Passage. Minnesota Department of Natural Resources.
- 1 2 Waldman, John. "Blocked Migration: Fish Ladders On U.S. Dams Are Not Effective". Yale Environment 360. Yale School of Forestry and Environmental Sciences. Retrieved 18 March 2016.
- ↑ Kraft, Amy. "Upstream Battle: Fishes Shun Modern Dam Passages, Contributing to Population Declines". Scientific American. Scientific American. Retrieved 18 March 2016.
References
- To Save the Salmon (1997) US Army Corps of Engineers.
External links
Wikimedia Commons has media related to Fish ladder. |
- A study of the hydraulics of flow over fishways
- Construction of a vertical slot fish passage and eel ladder for the St. Ours Dam (Richelieu River, Québec)
- Fish Passage Center
- Fish passes. Design, dimensions and monitoring, Food and Agriculture Organization of the United Nations/Deutscher Verband für Wasserwirtschaft und Kulturbau (DVWK), Rome, 2002 ISBN 92-5-104894-0 ISBN 3-89554-027-7 (Zip download from FTP area of the FAO's EIFAC – European Inland Fisheries Advisory Commission)
- Washington Post, January 31, 2007: U.S. Orders Modification of Klamath River – Dams Removal May Prove More Cost-Effective for allowing the passage of Salmon
- First "Denil" style dam in Illinois.
- Fish Ladders and Elevators not working.
|