Gliese 667

Gliese 667 A/B/C
Diagram showing star positions and boundaries of the constellation of Scorpius and its surroundings


A star chart of the constellation of Scorpius showing the position of Gliese 667

Observation data
Epoch J2000      Equinox J2000
Constellation Scorpius
Right ascension 17h 18m 57.16483s[1]
Declination −34° 59 23.1416[1]
Apparent magnitude (V) 5.91/7.20/10.20[2]
Characteristics
Spectral type K3V + K5V + M1.5V[2][3]
U−B color index 0.83/???/1.17
B−V color index 1.03/???/1.57
Variable type A: suspected
B: unknown
C: flare star
Astrometry
Radial velocity (Rv)6.5[4] km/s
Proper motion (μ) RA: 1129.76[1] mas/yr
Dec.: −77.02[1] mas/yr
Parallax (π)140.88 ± 2.04[5] mas
Distance23.2 ± 0.3 ly
(7.1 ± 0.1 pc)
Absolute magnitude (MV)7.07/8.02/11.03
Details
GJ 667 AB
Mass0.73 / 0.69[6] M
Radius0.76 / 0.70[2] R
Metallicity [Fe/H]–0.59[7] dex
GJ 667 C
Mass0.31[4] M
Radius0.42[2] R
Luminosity0.0137[4] L
Temperature3,700 ± 100[4] K
Metallicity [Fe/H]–0.59 ± 0.10[4] dex
Rotation105 days [4]
Age2–10[4] Gyr
Orbit[8]
CompanionGliese 667 B
Period (P)42.15 yr
Semi-major axis (a)1.81"
Eccentricity (e)0.58
Inclination (i)128°
Longitude of the node (Ω)313°
Periastron epoch (T)1975.9
Argument of periastron (ω)
(secondary)
247°
Other designations
142 G. Scorpii, CD34°11626, GJ 667, HD 156384, HIP 84709, HR 6426, LHS 442/442/443, SAO 208670.
Database references
SIMBADThe system
AB
A
B
C
Cb
Cc
Ce (artifact)
Cf (artifact)
Exoplanet Archivedata
ARICNSdata
Extrasolar Planets
Encyclopaedia
data

Gliese 667 (142 G. Scorpii) is a triple-star system in the constellation of Scorpius lying at a distance of about 6.8 pc (23.6 ly) from Earth. All three of the stars have masses smaller than the Sun. There is a 12th magnitude star close to the other three, but it is not gravitationally bound to the system. To the naked eye, the system appears to be a single faint star of magnitude 5.89.

The system has a relatively high proper motion, exceeding 1 second of arc per year.

Star system

The two brightest stars in this system, GJ 667 A and GJ 667 B, are orbiting each other at an average angular separation of 1.81 arcseconds with a high eccentricity of 0.58. At the estimated distance of this system, this is equivalent to a physical separation of about 12.6 AU, or nearly 13 times the separation of the Earth from the Sun. Their eccentric orbit brings the pair as close as about 5 AU to each other, or as distant as 20 AU, corresponding to an eccentricity of 0.6.[note 1][9] This orbit takes approximately 42.15 years to complete and the orbital plane is inclined at an angle of 128° to the line of sight from the Earth. The third star, GJ 667 C, orbits the GJ 667 AB pair at an angular separation of about 30", which equates to a minimum separation of 230 AU.[4][10]

Gliese 667 A

The largest star in the system, Gliese 667 A (GJ 667 A), is a K-type main-sequence star of stellar classification K3V.[2] It has about 73%[6] of the mass of the Sun and 76%[2] of the Sun's radius, but is radiating only around 12-13% of the luminosity of the Sun.[11] The concentration of elements other than hydrogen and helium, what astronomers term the star's metallicity, is much lower than in the Sun with a relative abundance of around 26% solar.[7] The apparent visual magnitude of this star is 6.29, which, at the star's estimated distance, gives an absolute magnitude of around 7.07 (assuming negligible extinction from interstellar matter).

Gliese 667 B

Like the primary, the secondary star Gliese 667 B (GJ 667 B) is a K-type main-sequence star, although it has a slightly later stellar classification of K5V. This star has a mass of about 69%[6] of the Sun, or 95% of the primary's mass, and it is radiating about 5% of the Sun's visual luminosity. The secondary's apparent magnitude is 7.24, giving it an absolute magnitude of around 8.02.

Gliese 667 C

Gliese 667 C is the smallest star in the system, with only around 31%[6] of the mass of the Sun and 42%[2] of the Sun's radius, orbiting approximately 230 AU from the Gliese 667 AB pair.[12] It is a red dwarf with a stellar classification of M1.5. This star is radiating only 1.4% of the Sun's luminosity from its outer atmosphere at a relatively cool effective temperature of 3,700 K.[4] This temperature is what gives it the red-hued glow that is a characteristic of M-type stars.[13] The apparent magnitude of the star is 10.25, giving it an absolute magnitude of about 11.03. It is known to have a system of two planets: claims have been made for up to seven[14] but these may be in error due to failure to account for correlated noise in the radial velocity data.[15] The red dwarf status of the star would allow any planets to receive minimal amounts of ultraviolet radiation.[12]

From the surface of Gliese 667 Cc, the second confirmed planet out that orbits along the middle of the habitable zone, Gliese 667 C would have an angular diameter of 1.24 degrees and would appear to be 2.3 times[note 2] the visual diameter of our Sun, as it appears from the surface of the Earth. Gliese 667 C would have a visual area 5.4 times greater than that of the Sun but would still only occupy 0.003 percent of Gliese 667 Cc's sky sphere or 0.006 percent of the visible sky when directly overhead.

Planetary system

Artist's impression of Gliese 667 Cb with the Gliese 667 A/B binary in the background
An artist's impression of GJ 667 Cc, a potentially habitable planet orbiting a red dwarf constituent in a trinary star system

Two extrasolar planets, Gliese 667 Cb (GJ 667 Cb) and Gliese 667 Cc (GJ 667 Cc), have been confirmed orbiting Gliese 667 C by radial velocity measurements of GJ 667.[15] Up to five additional planets have been claimed,[4][14] however these have not been confirmed and may be artifacts caused by correlated noise in the data.[15]

Planet Cb was first announced by the European Southern Observatory's HARPS group on 19 October 2009. The announcement was made together with 29 other planets, while Cc was first mentioned by the same group in a pre-print made public on 21 November 2011.[16] Announcement of a refereed journal report came on 2 February 2012 by researchers at the University of Göttingen/Carnegie Institution for Science.[4][17] In this announcement, GJ 667 Cc was described as one of the best candidates yet found to harbor liquid water, and thus, potentially, support life on its surface.[18] A detailed orbital analysis and refined orbital parameters for Gliese 667 Cc were presented.[4] Based on GJ 667 C's bolometric luminosity, GJ 667 Cc would receive 90% of the light Earth does,[11] however much of that electromagnetic radiation would be in the invisible infrared light part of the spectrum. Based on black body temperature calculation, GJ 667 Cc should absorb more overall electromagnetic radiation, making it warmer (277.4 K) and placing it slightly closer to the "hot" edge of the habitable zone than Earth (254.3 K).

At one point, five additional planets were thought to exist in the system, with three of them thought to be relatively certain to exist. However, subsequent studies showed that the other planets in the system could possibly be artifacts of noise and stellar activity, cutting the minimum number of planets down to two.[15]

The Gliese 667 C planetary system[15]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b ≥5.661 ± 0.437 M 0.050 ± 0.002 7.200 ± 0.001 0.122 ± 0.078
c ≥3.709 ± 0.682 M 0.125 ± 0.004 28.143 ± 0.029 0.133 ± 0.098

References

  1. 1 2 3 4 van Leeuwen, F. (November 2007), "Validation of the new Hipparcos reduction", Astronomy and Astrophysics 474 (2): 653–664, arXiv:0708.1752, Bibcode:2007A&A...474..653V, doi:10.1051/0004-6361:20078357
  2. 1 2 3 4 5 6 7 Pasinetti Fracassini, L. E.; et al. (February 2001), "Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics", Astronomy and Astrophysics 367: 521–524, arXiv:astro-ph/0012289, Bibcode:2001A&A...367..521P, doi:10.1051/0004-6361:20000451 Note: see VizieR catalogue J/A+A/367/521.
  3. "Toward spectral classification of L and T dwarfs: infrared and optical spectroscopy and analysis" (PDF), The Astrophysical Journal (The American Astronomical Society), January 2002, retrieved 2012-02-14
  4. 1 2 3 4 5 6 7 8 9 10 11 12 Anglada-Escudé, Guillem; Arriagada, Pamela; Vogt, Steven S.; Rivera, Eugenio J.; Butler, R. Paul; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.; Minniti, Dante; Haghighipour, Nader; Carter, Brad D.; Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; O'Toole, Simon J.; Jones, Hugh R. A.; Jenkins, James S. (2012). "A Planetary System around the nearby M Dwarf GJ 667C with At Least One Super-Earth in Its Habitable Zone". The Astrophysical Journal Letters 751 (1). article id. L16. arXiv:1202.0446. Bibcode:2012ApJ...751L..16A. doi:10.1088/2041-8205/751/1/L16.
  5. Lurie, John C.; Henry, Todd J.; Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G.; Ianna, Philip A.; Koerner, David W.; Riedel, Adric R.; Subasavage, John P. (2014). "The Solar Neighborhood. XXXIV. a Search for Planets Orbiting Nearby M Dwarfs Using Astrometry". The Astronomical Journal 148 (5): 91. arXiv:1407.4820. Bibcode:2014AJ....148...91L. doi:10.1088/0004-6256/148/5/91.
  6. 1 2 3 4 Tokovinin, A. (September 2008), "Comparative statistics and origin of triple and quadruple stars", Monthly Notices of the Royal Astronomical Society 389 (2): 925–938, arXiv:0806.3263, Bibcode:2008MNRAS.389..925T, doi:10.1111/j.1365-2966.2008.13613.x
  7. 1 2 Cayrel de Strobel, G.; Soubiran, C.; Ralite, N. (July 2001), "Catalogue of [Fe/H] determinations for FGK stars: 2001 edition", Astronomy and Astrophysics 373: 159–163, arXiv:astro-ph/0106438, Bibcode:2001A&A...373..159C, doi:10.1051/0004-6361:20010525
  8. Söderhjelm, Staffan (January 1999), "Visual binary orbits and masses POST HIPPARCOS", Astronomy and Astrophysics 341: 121–140, Bibcode:1999A&A...341..121S
  9. Bowman, Richard L. "Interactive Planetary Orbits - Kepler's Laws Calculations". Retrieved 23 February 2012.
  10. Philip C. Gregory (2012). "Additional Keplerian Signals in the HARPS data for Gliese 667C from a Bayesian Re-analysis". arXiv:1212.4058 [astro-ph.EP].
  11. 1 2 Sven Wedemeyer-Böhm. "Life on Gliese 667Cc?". Institute of Theoretical Astrophysics.
  12. 1 2 Anglada-Escudé, Guillem; Tuomi, Mikko; Gerlach, Enrico; Barnes, Rory; Heller, René; Jenkins, James S.; Wende, Sebastian; Vogt, Steven S.; Butler, R. Paul; Reiners, Ansgar; Jones, Hugh R. A. (2013-06-07). "A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone" (PDF). Astronomy & Astrophysics. arXiv:1306.6074. Bibcode:2013A&A...556A.126A. doi:10.1051/0004-6361/201321331. Archived from the original (PDF) on 2013-06-30. Retrieved 2013-06-25.
  13. "The Colour of Stars", Australia Telescope, Outreach and Education (Commonwealth Scientific and Industrial Research Organisation), December 21, 2004, retrieved 2012-01-16
  14. 1 2 Anglada-Escudé, Guillem; Tuomi, Mikko; Gerlach, Enrico; Barnes, Rory; Heller, René; Jenkins, James S.; Wende, Sebastian; Vogt, Steven S.; Butler, R. Paul; Reiners, Ansgar; Jones, Hugh R. A. (2013-06-07). "A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone" (PDF). Astronomy & Astrophysics. arXiv:1306.6074. Bibcode:2013A&A...556A.126A. doi:10.1051/0004-6361/201321331. Retrieved 2013-06-25.
  15. 1 2 3 4 5 Feroz, F.; Hobson, M. P. (2014). "Bayesian analysis of radial velocity data of GJ667C with correlated noise: evidence for only two planets". Monthly Notices of the Royal Astronomical Society 437 (4): 3540–3549. arXiv:1307.6984. Bibcode:2014MNRAS.437.3540F. doi:10.1093/mnras/stt2148.
  16. Bonfils, X.; et al. (November 2011), "The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample", Astronomy and Astrophysics, submitted, arXiv:1111.5019, Bibcode:2013A&A...549A.109B, doi:10.1051/0004-6361/201014704
  17. University of Göttingen. Presseinformation: Wissenschaftler entdecken möglicherweise bewohnbare Super-Erde - Göttinger Astrophysiker untersucht Planeten in 22 Lichtjahren Entfernung. Nr. 17/2012 - 02.02.2012. Announcement on university homepage, retrieved 2012-02-02
  18. Chow, Denise (February 2, 2012). "Newfound Alien Planet is Best Candidate Yet to Support Life, Scientists Say". Space.com. Retrieved February 3, 2012.

Notes

  1. Based on a calculated eccentricity value of \scriptstyle e={{r_a-r_p}\over{r_a+r_p}}.
  2. \begin{smallmatrix}\frac {h} {{h}_{\odot}}={\left( \frac{{{T}_{\odot}}_{\rm eff}} {{T}_{\rm eff}} \right)^2} *\frac{\sqrt{L}} {a}\end{smallmatrix}. where \begin{smallmatrix}{h}\end{smallmatrix} is the apparent visual diameter of the star from the surface of the planet in orbit (GJ667Cc in this case), \begin{smallmatrix}{{h}_{\odot}}\end{smallmatrix} is the apparent visual diameter of the Sun (sol) from the surface of Earth, \begin{smallmatrix}{{T}_{\odot}}_{\rm eff}\end{smallmatrix} is the effective temperature of the Sun (sol), \begin{smallmatrix}{{T}_{\rm eff}}\end{smallmatrix} the effective temperature of the star, \begin{smallmatrix}{L}\end{smallmatrix} is the luminosity of the star as a fraction of the sun's luminosity and \begin{smallmatrix}{a}\end{smallmatrix} is the distance of the planet from the star in AU.

External links

Wikimedia Commons has media related to Gliese 667.

Coordinates: 17h 18m 57.16483s, −34° 59′ 23.1416″

This article is issued from Wikipedia - version of the Wednesday, April 20, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.