Loránd Eötvös
Loránd Eötvös | |
---|---|
Loránd (Roland) Eötvös | |
Born |
27 July 1848 Buda |
Died |
8 April 1919 70) Budapest | (aged
Nationality | Austro-Hungarian |
Fields | Physics |
Institutions | University of Budapest |
Alma mater | University of Heidelberg |
Doctoral advisor | Hermann Helmholtz[1] |
Known for |
Eötvös experiment Eötvös rule Eötvös pendulum |
Children |
Jolán Rolanda Ilona |
Baron Loránd Eötvös de Vásárosnamény (Hungarian: vásárosnaményi báró Eötvös Loránd Ágoston or Loránd Eötvös, pronounced [ˈloraːnd ˈøtvøʃ]; 27 July 1848 – 8 April 1919), more commonly called Baron Roland von Eötvös in English literature,[2] was an Austro-Hungarian physicist of ethnic Hungarian origin. He is remembered today largely for his work on gravitation and surface tension, and the invention of the torsion pendulum.
Life
Born in 1848, the year of the Hungarian revolution, Eötvös was the son of József Eötvös, a well-known poet, writer, and liberal politician, who was cabinet minister at the time, and played an important part in 19th century Hungarian intellectual and political life. The Loránd Eötvös Mathematics Competition is named after him.[3]
Loránd Eötvös first studied law, but soon switched to physics and went abroad to study in Heidelberg and Königsberg. After earning his doctorate, he became a university professor in Budapest and played a leading part in Hungarian science for almost half a century. He gained international recognition first by his innovative work on capillarity, then by his refined experimental methods and extensive field studies in gravity.
Eötvös is remembered today for his experimental work on gravity, in particular his study of the equivalence of gravitational and inertial mass (the so-called weak equivalence principle) and his study of the gravitational gradient on the Earth's surface. The weak equivalence principle plays a prominent role in relativity theory and the Eötvös experiment was cited by Albert Einstein in his 1916 paper The Foundation of the General Theory of Relativity. Measurements of the gravitational gradient are important in applied geophysics, such as the location of petroleum deposits. The CGS unit for gravitational gradient is named the eotvos in his honor.
From 1886 until his death, Loránd Eötvös researched and taught in the University of Budapest, which in 1950 was renamed after him (Eötvös Loránd University).
Eötvös is buried in the Kerepesi Cemetery in Budapest, Hungary.[4]
Torsion balance
A variation of the earlier invention, the torsion balance, the Eötvös pendulum, designed by Hungarian Baron Loránd Eötvös, is a sensitive instrument for measuring the density of underlying rock strata. The device measures not only the direction of force of gravity, but the change in the force of gravity's extent in the horizontal plane. It determines the distribution of masses in the Earth's crust. The Eötvös torsion balance, an important instrument of geodesy and geophysics throughout the whole world, studies the Earth's physical properties. It is used for mine exploration, and also in the search for minerals, such as oil, coal and ores. The Eötvös pendulum was never patented, but after the demonstration of its accuracy and numerous visits to Hungary from abroad, several instruments were exported worldwide, and the richest oilfields in the United States were discovered by using it. The Eötvös pendulum was used to prove the equivalence of the inertial mass and the gravitational mass accurately, as a response to the offer of a prize. This equivalence was used later by Albert Einstein in setting out the theory of general relativity.
This is how Eötvös describes his balance:
It was just a simple, straight stick that I used as instrument, specially loaded at both ends, enclosed into a metal sheath to protect it from the wind and temperature changes. Upon this stick every single mass, be it near or far, exerts a directing force; but the wire upon which it hangs resists, and whilst resisting it twists, with the degree of this twist showing us the exact magnitude of the forces acting upon the stick. This is a Coulomb balance, and that is all there is to it. It is simple, like the flute of Hamlet, you only have to know how to play on it, and just like the musician who can delight you with splendid variations, the physicist can, on this balance, with no less delight determine the finest variations of gravity. This way we can peer into such depth of the crust of the Earth, that neither our eyes, nor our longest drills could reach.
One of Eötvös' assistants who later became a noted scientist was Radó von Kövesligethy.
See also
- eotvos, a unit of gravitational gradient
- Eötvös effect, a concept in geodesy
- Eötvös number, a concept in fluid dynamics
- Eötvös (crater) on the moon
- Eötvös rule for predicting surface tension dependent on temperature
- List of geophysicists
- Lorándite, a mineral named after Loránd Eötvös
References
- ↑ Physics Tree – Hermann von Helmholtz Family Tree
- ↑ L. Bod, E. Fishbach, G. Marx, and Maria Náray-Ziegler: One hundred years of the Eötvös experiment, – Acta Physica Hungarica 69/3-4 (1991) 335–355
- ↑ http://www.batmath.it/matematica/raccolte_es/ek_competitions/ek_competitions.pdf
- ↑ See this site for a photograph of his gravesite.
Further reading
- Antall, J. (1971), "The Pest School of Medicine and the health policy of the Centralists. On the centenary of the death of József Eötvös", Orvosi hetilap (May 9, 1971) 112 (19), pp. 1083–9, PMID 4932574
External links
- Eötvös and STEP (biographical remarks and a summary of his research)
- Eötvös Loránd Virtual Museum
Political offices | ||
---|---|---|
Preceded by Albin Csáky |
Minister of Religion and Education 1894–1895 |
Succeeded by Gyula Wlassics |
Cultural offices | ||
Preceded by Ágoston Trefort |
President of the Hungarian Academy of Sciences 1889–1905 |
Succeeded by Albert Berzeviczy |
|
|