Ruthenium tetroxide

Ruthenium(VIII) oxide
Names
IUPAC name
Ruthenium(VIII) oxide
Identifiers
20427-56-9 YesY
PubChem 119079
Properties
RuO4
Molar mass 165.07 g/mol
Appearance colorless liquid
Odor pungent
Density 3.29 g/cm3
Melting point 25.4 °C (77.7 °F; 298.5 K)
Boiling point 40.0 °C (104.0 °F; 313.1 K)
2% w/v at 20 °C
Solubility in other solvents Soluble in
Carbon tetrachloride
Chloroform
Structure
tetrahedral
zero
Hazards
Safety data sheet external MSDS sheet
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g., calcium Special hazards (white): no codeNFPA 704 four-colored diamond
0
3
1
Related compounds
Related compounds
RuO2
RuCl3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Ruthenium tetroxide (Ruthenium(VIII) oxide) is the inorganic compound with the formula RuO4. It is a colourless, diamagnetic liquid, but samples are typically black due to impurities. It is volatile. The analogous OsO4 is more widely used and better known. One of the few solvents in which it forms stable solutions is CCl4.

Preparation

RuO4 is prepared by oxidation of ruthenium(III) chloride with NaIO4.

8 Ru3+(aq) + 5 IO4(aq) + 12 H2O(l) 8 RuO4(s) + 5 I(aq) + 24 H+(aq)

In typical reactions featuring RuO4 as the oxidant, many forms of ruthenium usefully serve as precursors to RuO4, such as oxide hydrates or hydrated chloride.

Structure

The molecule adopts a tetrahedral geomtery, with the Ru-O distances ranging from 169 to 170 pm.[1]

Uses

Isolation of ruthenium from ores

The main value of RuO4 is as an intermediate in the production of ruthenium compounds and metal from ores. Like other platinum group metals (PGMs), ruthenium occurs at low concentrations and often mixed with other PGMs. Together with OsO4, it is separated from other PGMs by distillation of a chlorine-oxidized extract. Ruthenium is separated from OsO4 by reducing RuO4 with hydrochloric acid, a process that exploits the highly positive reduction potential for the [RuO4]0/- couple.[2]

Organic chemistry

RuO4 is only of specialized value in organic chemistry because it oxidizes virtually any hydrocarbon. For example, it will oxidize adamantane to 1-adamantanol. Because it is such an aggressive oxidant, reaction conditions must be mild, generally room temperature. Although a strong oxidant, RuO4 oxidations do not perturb stereocenters that are not oxidized. Illustrative is the oxidation of the following diol to a carboxylic acid:

Oxidation of epoxy alcohols also occurs without degradation of the epoxide ring:

Under milder condition, oxidative reaction yields aldehydes instead. RuO4 readily converts secondary alcohols into ketones. Although similar results can be achieved with other cheaper oxidants such as PCC- or DMSO-based oxidants, RuO4 is ideal when a very vigorous oxidant is needed but mild conditions must be maintained. It is used in organic synthesis to oxidize internal alkynes to 1,2-diketones, and terminal alkynes along with primary alcohols to carboxylic acids. When used in this fashion, the ruthenium(VIII) oxide is used in catalytic amounts and regenerated by the addition of sodium periodate to ruthenium(III) chloride and a solvent mixture of acetonitrile, water and carbon tetrachloride. RuO4 readily cleaves double bonds to yield carbonyl products, in a manner similar to ozonolysis. Osmium(VIII) oxide, a more familiar oxidant that is structurally similar to RuO4, does not cleave double bonds, instead producing vicinal diol products.

Although used as a direct oxidant, due to the relatively high cost of RuO4 it is also used catalytically with a cooxidant. For an oxidation of cyclic alcohols with RuO4 as a catalyst and bromate as a base, RuO4 is first activated by hydroxide:

RuO4 + OH → HRuO5

The reaction proceeds via a glycolate complex.

Other uses

Ruthenium tetroxide is a potential staining agent. It is used to expose latent fingerprints by turning to the brown/black ruthenium dioxide when in contact with fatty oils or fats contained in sebaceous contaminants of the print.[3]

Related ruthenium compounds

Because RuO4 will readily decompose explosively at slightly elevated temperatures, most laboratories do not synthesize it directly, nor is it commercially available. A related reagent is the anionic Ru(VII) derivative in the form of the salt of "TPAP" (tetrapropylammonium perruthenate), [N(C3H7)4]RuO4. TPAP is synthesized by oxidizing RuCl3 to RuO4 by NaBrO3 and isolated as the tetrapropylamine cation, which allows the salt to be used in organic solvents.

References

  1. Pley, M.; Wickleder, M. S. (2005). "Two Crystalline Modifications of RuO4". Journal of Solid State Chemistry 178 (10): 3206–3209. doi:10.1016/j.jssc.2005.07.021.
  2. Bernardis, F. L.; Grant, R. A.; Sherrington, D. C. "A review of methods of separation of the platinum-group metals through their chloro-complexes" Reactive and Functional Polymers 2005, Vol. 65,, p. 205-217. doi:10.1016/j.reactfunctpolym.2005.05.011
  3. Mashiko, K.; Miyamoto, T. (1998). "Latent Fingerprint Processing by the Ruthenium Tetroxide Method". Journal of Forensic Identification 48 (3): 279–290. doi:10.3408/jasti.2.21.

Further reading

This article is issued from Wikipedia - version of the Thursday, March 31, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.