Timeline of mathematical innovation in South and West Asia
South and West Asia consists of a wide region extending from the present-day country of Turkey in the west to Bangladesh and India in the east.
Timeline
- 3rd millennium BCE Sexagesimal system of the Sumerians:
- 2nd millennium BCE Babylonian Pythagorean triples. According to mathematician S. G. Dani, the Babylonian cuneiform tablet Plimpton 322 written ca. 1850 BCE[1] "contains fifteen Pythagorean triples with quite large entries, including (13500, 12709, 18541) which is a primitive triple,[2] indicating, in particular, that there was sophisticated understanding on the topic" in Mesopotamia.
- 1st millennium BCE Baudhayana Śulba Sūtras Earliest statement of Pythagorean Theorem: According to (Hayashi 2005, p. 363), the Śulba Sūtras contain "the earliest extant verbal expression of the Pythagorean Theorem in the world, although it had already been known to the Old Babylonians."
The diagonal rope (akṣṇayā-rajju) of an oblong (rectangle) produces both which the flank (pārśvamāni) and the horizontal (tiryaṇmānī) <ropes> produce separately."[3]
Since the statement is a sūtra, it is necessarily compressed and what the ropes produce is not elaborated on, but the context clearly implies the square areas constructed on their lengths, and would have been explained so by the teacher to the student.[3]
See also
Notes
- ↑ Mathematics Department, University of British Columbia, The Babylonian tablet Plimpton 322.
- ↑ Three positive integers form a primitive Pythagorean triple if and if the highest common factor of is 1. In the particular Plimpton322 example, this means that and that the three numbers do not have any common factors. However some scholars have disputed the Pythagorean interpretation of this tablet; see Plimpton 322 for details.
- 1 2 (Hayashi 2005, p. 363)
References
- Bourbaki, Nicolas (1998), Elements of the History of Mathematics, Berlin, Heidelberg, and New York: Springer-Verlag, 301 pages, ISBN 3-540-64767-8.
- Boyer, C. B.; Merzback (fwd. by Isaac Asimov), U. C. (1991), History of Mathematics, New York: John Wiley and Sons, 736 pages, ISBN 0-471-54397-7.
- Bressoud, David (2002), "Was Calculus Invented in India?", The College Mathematics Journal (Math. Assoc. Amer.) 33 (1): 2–13, doi:10.2307/1558972, ISSN 0746-8342, JSTOR 1558972.
- Bronkhorst, Johannes (2001), "Panini and Euclid: Reflections on Indian Geometry", Journal of Indian Philosophy (Springer Netherlands) 29 (1–2): 43–80, doi:10.1023/A:1017506118885.
- Burnett, Charles (2006), "The Semantics of Indian Numerals in Arabic, Greek and Latin", Journal of Indian Philosophy (Springer-Netherlands) 34 (1–2): 15–30, doi:10.1007/s10781-005-8153-z.
- Burton, David M. (1997), The History of Mathematics: An Introduction, The McGraw-Hill Companies, Inc., pp. 193–220.
- Cooke, Roger (2005), The History of Mathematics: A Brief Course, New York: Wiley-Interscience, 632 pages, ISBN 0-471-44459-6.
- Dani, S. G. (July 25, 2003), "On the Pythagorean triples in the Śulvasūtras" (PDF), Current Science 85 (2): 219–224.
- Datta, Bibhutibhusan (Dec 1931), "Early Literary Evidence of the Use of the Zero in India", The American Mathematical Monthly 38 (10): 566–572, doi:10.2307/2301384, ISSN 0002-9890, JSTOR 2301384.
- Datta, Bibhutibhusan; Singh, Avadesh Narayan (1962), History of Hindu Mathematics: A Source Book, Bombay: Asia Publishing House.
- De Young, Gregg (1995), "Euclidean Geometry in the Mathematical Tradition of Islamic India", Historia Mathematica 22 (2): 138–153, doi:10.1006/hmat.1995.1014.
- Encyclopædia Britannica (Kim Plofker) (2007), "mathematics, South Asian", Encyclopædia Britannica Online: 1–12, retrieved May 18, 2007.
- Filliozat, Pierre-Sylvain (2004), "Ancient Sanskrit Mathematics: An Oral Tradition and a Written Literature", in Chemla, Karine; Cohen, Robert S.; Renn, Jürgen; Gavroglu, Kostas, History of Science, History of Text (Boston Series in the Philosophy of Science), Dordrecht: Springer Netherlands, 254 pages, pp. 137-157, pp. 360–375, ISBN 978-1-4020-2320-0.
- Fowler, David (1996), "Binomial Coefficient Function", The American Mathematical Monthly 103 (1): 1–17, doi:10.2307/2975209, ISSN 0002-9890, JSTOR 2975209.
- Hayashi, Takao (1995), The Bakhshali Manuscript, An ancient Indian mathematical treatise, Groningen: Egbert Forsten, 596 pages, ISBN 90-6980-087-X.
- Hayashi, Takao (1997), "Aryabhata's Rule and Table of Sine-Differences", Historia Mathematica 24 (4): 396–406, doi:10.1006/hmat.1997.2160.
- Hayashi, Takao (2003), "Indian Mathematics", in Grattan-Guinness, Ivor, Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, 1, pp. 118-130, Baltimore, MD: The Johns Hopkins University Press, 976 pages, ISBN 0-8018-7396-7.
- Hayashi, Takao (2005), "Indian Mathematics", in Flood, Gavin, The Blackwell Companion to Hinduism, Oxford: Basil Blackwell, 616 pages, pp. 360-375, pp. 360–375, ISBN 978-1-4051-3251-0.
- Henderson, David W. (2000), "Square roots in the Sulba Sutras", in Gorini, Catherine A., Geometry at Work: Papers in Applied Geometry, 53, pp. 39-45, Washington DC: Mathematical Association of America Notes, 236 pages, pp. 39–45, ISBN 0-88385-164-4.
- Ifrah, Georges (2000), A Universal History of Numbers: From Prehistory to Computers, New York: Wiley, 658 pages, ISBN 0-471-39340-1.
- Joseph, G. G. (2000), The Crest of the Peacock: The Non-European Roots of Mathematics, Princeton, NJ: Princeton University Press, 416 pages, ISBN 0-691-00659-8.
- Katz, Victor J. (1995), "Ideas of Calculus in Islam and India", Mathematics Magazine (Math. Assoc. Amer.) 68 (3): 163–174, doi:10.2307/2691411.
- Katz, Victor J., ed. (2007), The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook, Princeton, NJ: Princeton University Press, 685 pages, pp 385-514, ISBN 0-691-11485-4.
- Keller, Agathe (2005), "Making diagrams speak, in Bhāskara I's commentary on the Aryabhaṭīya", Historia Mathematica 32 (3): 275–302, doi:10.1016/j.hm.2004.09.001.
- Kichenassamy, Satynad (2006), "Baudhāyana's rule for the quadrature of the circle", Historia Mathematica 33 (2): 149–183, doi:10.1016/j.hm.2005.05.001.
- Pingree, David (1971), "On the Greek Origin of the Indian Planetary Model Employing a Double Epicycle", Journal of Historical Astronomy 2 (1): 80–85.
- Pingree, David (1973), "The Mesopotamian Origin of Early Indian Mathematical Astronomy", Journal of Historical Astronomy 4 (1): 1–12, doi:10.1177/002182867300400102.
- Pingree, David; Staal, Frits (1988), "Reviewed Work(s): The Fidelity of Oral Tradition and the Origins of Science by Frits Staal", Journal of the American Oriental Society 108 (4): 637–638, doi:10.2307/603154, JSTOR 603154.
- Pingree, David (1992), "Hellenophilia versus the History of Science", Isis 83 (4): 554–563, Bibcode:1992Isis...83..554P, doi:10.1086/356288, JSTOR 234257
- Pingree, David (2003), "The logic of non-Western science: mathematical discoveries in medieval India", Daedalus 132 (4): 45–54, doi:10.1162/001152603771338779.
- Plofker, Kim (1996), "An Example of the Secant Method of Iterative Approximation in a Fifteenth-Century Sanskrit Text", Historia Mathematica 23 (3): 246–256, doi:10.1006/hmat.1996.0026.
- Plofker, Kim (2001), "The "Error" in the Indian "Taylor Series Approximation" to the Sine", Historia Mathematica 28 (4): 283–295, doi:10.1006/hmat.2001.2331.
- Plofker, K. (2007), "Mathematics of India", in Katz, Victor J., The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook, Princeton, NJ: Princeton University Press, 685 pages, pp 385-514, pp. 385–514, ISBN 0-691-11485-4.
- Plofker, Kim (2009), Mathematics in India: 500 BCE–1800 CE, Princeton, NJ: Princeton University Press. Pp. 384., ISBN 0-691-12067-6.
- Price, John F. (2000), "Applied geometry of the Sulba Sutras" (PDF), in Gorini, Catherine A., Geometry at Work: Papers in Applied Geometry, 53, pp. 46-58, Washington DC: Mathematical Association of America Notes, 236 pages, pp. 46–58, ISBN 0-88385-164-4.
- Roy, Ranjan (1990), , Mathematics Magazine (Math. Assoc. Amer.) 63 (5): 291–306, doi:10.2307/2690896.
- Singh, A. N. (1936), "On the Use of Series in Hindu Mathematics", Osiris 1 (1): 606–628, doi:10.1086/368443, ISSN 0369-7827, JSTOR 301627
- Staal, Frits (1986), The Fidelity of Oral Tradition and the Origins of Science, Mededelingen der Koninklijke Nederlandse Akademie von Wetenschappen, Afd. Letterkunde, NS 49, 8. Amsterdam: North Holland Publishing Company, 40 pages.
- Staal, Frits (1995), "The Sanskrit of science", Journal of Indian Philosophy (Springer Netherlands) 23 (1): 73–127, doi:10.1007/BF01062067.
- Staal, Frits (1999), "Greek and Vedic Geometry", Journal of Indian Philosophy 27 (1–2): 105–127, doi:10.1023/A:1004364417713.
- Staal, Frits (2001), "Squares and oblongs in the Veda", Journal of Indian Philosophy (Springer Netherlands) 29 (1–2): 256–272, doi:10.1023/A:1017527129520.
- Staal, Frits (2006), "Artificial Languages Across Sciences and Civilizations", Journal of Indian Philosophy (Springer Netherlands) 34 (1): 89–141, doi:10.1007/s10781-005-8189-0.
- Stillwell, John (2004), Berlin and New York: Mathematics and its History (2 ed.), Springer, 568 pages, ISBN 0-387-95336-1.
- Thibaut, George (1984) [1875], Mathematics in the Making in Ancient India: reprints of 'On the Sulvasutras' and 'Baudhyayana Sulva-sutra', Calcutta and Delhi: K. P. Bagchi and Company (orig. Journal of Asiatic Society of Bengal), 133 pages.
- van der Waerden, B. L. (1983), Geometry and Algebra in Ancient Civilizations, Berlin and New York: Springer, 223 pages, ISBN 0-387-12159-5
- van der Waerden, B. L. (1988), "On the Romaka-Siddhānta", Archive for History of Exact Sciences 38 (1): 1–11, doi:10.1007/BF00329976
- van der Waerden, B. L. (1988), "Reconstruction of a Greek table of chords", Archive for History of Exact Sciences 38 (1): 23–38, doi:10.1007/BF00329978
- Van Nooten, B. (1993), "Binary numbers in Indian antiquity", Journal of Indian Philosophy (Springer Netherlands) 21 (1): 31–50, doi:10.1007/BF01092744
- Whish, Charles (1835), "On the Hindú Quadrature of the Circle, and the infinite Series of the proportion of the circumference to the diameter exhibited in the four S'ástras, the Tantra Sangraham, Yucti Bháshá, Carana Padhati, and Sadratnamála", Transactions of the Royal Asiatic Society of Great Britain and Ireland 3 (03): 509–523, doi:10.1017/S0950473700001221, JSTOR 25581775
- Yano, Michio (2006), "Oral and Written Transmission of the Exact Sciences in Sanskrit", Journal of Indian Philosophy (Springer Netherlands) 34 (1–2): 143–160, doi:10.1007/s10781-005-8175-6
|
This article is issued from Wikipedia - version of the Sunday, May 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.