Cooperative game
- This article is about a part of game theory. For video gaming, see Cooperative gameplay. For the similar feature in some board games, see cooperative board game
In game theory, a cooperative game is a game where groups of players ("coalitions") may enforce cooperative behaviour, hence the game is a competition between coalitions of players, rather than between individual players. An example is a coordination game, when players choose the strategies by a consensus decision-making process.
Recreational games are rarely cooperative, because they usually lack mechanisms by which coalitions may enforce coordinated behaviour on the members of the coalition. Such mechanisms, however, are abundant in real life situations (e.g. contract law).
Mathematical definition
A cooperative game is given by specifying a value for every coalition. Formally, the game (coalitional game) consists of a finite set of players  , called the grand coalition, and a characteristic function
, called the grand coalition, and a characteristic function  [1] from the set of all possible coalitions of players to a set of payments that satisfies
 [1] from the set of all possible coalitions of players to a set of payments that satisfies  . The function describes how much collective payoff a set of players can gain by forming a coalition, and the game is sometimes called a value game or a profit game. The players are assumed to choose which coalitions to form, according to their estimate of the way the payment will be divided among coalition members.
. The function describes how much collective payoff a set of players can gain by forming a coalition, and the game is sometimes called a value game or a profit game. The players are assumed to choose which coalitions to form, according to their estimate of the way the payment will be divided among coalition members.
Conversely, a cooperative game can also be defined with a characteristic cost function  satisfying
 satisfying  . In this setting, players must accomplish some task, and the characteristic function
. In this setting, players must accomplish some task, and the characteristic function  represents the cost of a set of players accomplishing the task together. A game of this kind is known as a cost game. Although most cooperative game theory deals with profit games, all concepts can easily be translated to the cost setting.
 represents the cost of a set of players accomplishing the task together. A game of this kind is known as a cost game. Although most cooperative game theory deals with profit games, all concepts can easily be translated to the cost setting.
Duality
Let  be a profit game. The dual game of
 be a profit game. The dual game of  is the cost game
 is the cost game  defined as
 defined as
Intuitively, the dual game represents the opportunity cost for a coalition  of not joining the grand coalition
 of not joining the grand coalition  . A dual profit game
. A dual profit game  can be defined identically for a cost game
 can be defined identically for a cost game  . A cooperative game and its dual are in some sense equivalent, and they share many properties. For example, the core of a game and its dual are equal. For more details on cooperative game duality, see for instance (Bilbao 2000).
. A cooperative game and its dual are in some sense equivalent, and they share many properties. For example, the core of a game and its dual are equal. For more details on cooperative game duality, see for instance (Bilbao 2000).
Subgames
Let  be a non-empty coalition of players. The subgame
 be a non-empty coalition of players. The subgame  on
 on  is naturally defined as
 is naturally defined as
In other words, we simply restrict our attention to coalitions contained in  . Subgames are useful because they allow us to apply solution concepts defined for the grand coalition on smaller coalitions.
. Subgames are useful because they allow us to apply solution concepts defined for the grand coalition on smaller coalitions.
Properties for characterization
Superadditivity
Characteristic functions are often assumed to be superadditive (Owen 1995, p. 213). This means that the value of a union of disjoint coalitions is no less than the sum of the coalitions' separate values:
 whenever
 whenever  satisfy
 satisfy  .
.
Monotonicity
Larger coalitions gain more:  . This follows from superadditivity if payoffs are normalized so singleton coalitions have value zero.
. This follows from superadditivity if payoffs are normalized so singleton coalitions have value zero.
Properties for simple games
A coalitional game  is simple if payoffs are either 1 or 0, i.e., coalitions are either "winning" or "losing".
Equivalently, a simple game can be defined as a collection
 is simple if payoffs are either 1 or 0, i.e., coalitions are either "winning" or "losing".
Equivalently, a simple game can be defined as a collection  of coalitions,
where the members of
 of coalitions,
where the members of  are called winning coalitions, and the others losing coalitions.
It is sometimes assumed that a simple game is nonempty or that it does not contain an empty set.
In other areas of mathematics, simple games are also called hypergraphs or Boolean functions (logic functions).
 are called winning coalitions, and the others losing coalitions.
It is sometimes assumed that a simple game is nonempty or that it does not contain an empty set.
In other areas of mathematics, simple games are also called hypergraphs or Boolean functions (logic functions).
-  A simple game  is monotonic if any coalition containing a winning coalition is also winning, that is, if is monotonic if any coalition containing a winning coalition is also winning, that is, if and and imply imply . .
-  A simple game  is proper if the complement (opposition) of any winning coalition is losing, that is, if is proper if the complement (opposition) of any winning coalition is losing, that is, if implies implies . .
-  A simple game  is strong if the complement of any losing coalition is winning, that is, if is strong if the complement of any losing coalition is winning, that is, if imples imples . .-  If a simple game  is proper and strong, then  a coalition is winning if and only if its complement is losing, that is, is proper and strong, then  a coalition is winning if and only if its complement is losing, that is, iff iff . (If . (If is a colitional simple game that is proper and strong, is a colitional simple game that is proper and strong, for any for any .) .)
 
-  If a simple game 
-  A veto player (vetoer) in a simple game is a player that belongs to all winning coalitions. Supposing there is a veto player, any coalition not containing a veto player is losing.  A simple game  is weak (collegial) if it has a veto player, that is, if the intersection is weak (collegial) if it has a veto player, that is, if the intersection of all winning coalitions is nonempty. of all winning coalitions is nonempty.- A dictator in a simple game is a veto player such that any coalition containing this player is winning. The dictator does not belong to any losing coalition. (Dictator games in experimental economics are unrelated to this.)
 
-  A carrier  of a simple game  is a set is a set such that for any coalition such that for any coalition , we have , we have iff iff .  When a simple game has a carrier, any player not belonging to it is ignored.  A simple game is sometimes called finite if it has a finite carrier (even if .  When a simple game has a carrier, any player not belonging to it is ignored.  A simple game is sometimes called finite if it has a finite carrier (even if is infinite). is infinite).
- The Nakamura number of a simple game is the minimal number of winning coalitions with empty intersection. According to Nakamura's theorem, the number measures the degree of rationality; it is an indicator of the extent to which an aggregation rule can yield well-defined choices.
A few relations among the above axioms have widely been recognized, such as the following (e.g., Peleg, 2002, Section 2.1[2]):
- If a simple game is weak, it is proper.
- A simple game is dictatorial if and only if it is strong and weak.
More generally, a complete investigation of the relation among the four conventional axioms (monotonicity, properness, strongness, and non-weakness), finiteness, and algorithmic computability[3] has been made (Kumabe and Mihara, 2011[4]), whose results are summarized in the Table "Existence of Simple Games" below.
| Type | Finite Non-comp | Finite Computable | Infinite Non-comp | Infinite Computable | 
|---|---|---|---|---|
| 1111 | no | yes | yes | yes | 
| 1110 | no | yes | no | no | 
| 1101 | no | yes | yes | yes | 
| 1100 | no | yes | yes | yes | 
| 1011 | no | yes | yes | yes | 
| 1010 | no | no | no | no | 
| 1001 | no | yes | yes | yes | 
| 1000 | no | no | no | no | 
| 0111 | no | yes | yes | yes | 
| 0110 | no | no | no | no | 
| 0101 | no | yes | yes | yes | 
| 0100 | no | yes | yes | yes | 
| 0011 | no | yes | yes | yes | 
| 0010 | no | no | no | no | 
| 0001 | no | yes | yes | yes | 
| 0000 | no | no | no | no | 
The restrictions that various axioms for simple games impose on their Nakamura number are also studied extensively.[6] In particular, a computable simple game without a veto player has a Nakamura number greater than 3 only if it is proper and non-strong.
Relation with non-cooperative theory
Let G be a strategic (non-cooperative) game. Then, assuming that coalitions have the ability to enforce coordinated behaviour, there are several cooperative games associated with G. These games are often referred to as representations of G. The two standard representations are:[7]
- The α-effective game associates with each coalition the sum of gains its members can 'guarantee' by joining forces. By 'guaranteeing', it is meant that the value is the max-min, e.g. the maximal value of the minimum taken over the opposition's strategies.
- The β-effective game associates with each coalition the sum of gains its members can 'strategically guarantee' by joining forces. By 'strategically guaranteeing', it is meant that the value is the min-max, e.g. the minimal value of the maximum taken over the opposition's strategies.
Solution concepts
The main assumption in cooperative game theory is that the grand coalition  will form. The challenge is then to allocate the payoff
 will form. The challenge is then to allocate the payoff  among the players in some fair way. (This assumption is not restrictive, because even if players split off and form smaller coalitions, we can apply solution concepts to the subgames defined by whatever coalitions actually form.)  A solution concept is a vector
 among the players in some fair way. (This assumption is not restrictive, because even if players split off and form smaller coalitions, we can apply solution concepts to the subgames defined by whatever coalitions actually form.)  A solution concept is a vector  that represents the allocation to each player. Researchers have proposed different solution concepts based on different notions of fairness. Some properties to look for in a solution concept include:
 that represents the allocation to each player. Researchers have proposed different solution concepts based on different notions of fairness. Some properties to look for in a solution concept include:
-  Efficiency: The payoff vector exactly splits the total value:  . .
-  Individual rationality: No player receives less than what he could get on his own:  . .
-  Existence: The solution concept exists for any game  . .
-  Uniqueness: The solution concept is unique for any game  . .
-  Computational ease: The solution concept can be calculated efficiently (i.e. in polynomial time with respect to the number of players  .) .)
-  Symmetry: The solution concept  allocates equal payments allocates equal payments to symmetric players to symmetric players , , . Two players . Two players , , are symmetric if are symmetric if ; that is, we can exchange one player for the other in any coalition that contains only one of the players and not change the payoff. ; that is, we can exchange one player for the other in any coalition that contains only one of the players and not change the payoff.
-  Additivity: The allocation to a player in a sum of two games is the sum of the allocations to the player in each individual game. Mathematically, if  and and are games, the game are games, the game simply assigns to any coalition the sum of the payoffs the coalition would get in the two individual games. An additive solution concept assigns to every player in simply assigns to any coalition the sum of the payoffs the coalition would get in the two individual games. An additive solution concept assigns to every player in the sum of what he would receive in the sum of what he would receive in and and . .
-  Zero Allocation to Null Players: The allocation to a null player is zero. A null player  satisfies satisfies . In economic terms, a null player's marginal value to any coalition that does not contain him is zero. . In economic terms, a null player's marginal value to any coalition that does not contain him is zero.
An efficient payoff vector is called a pre-imputation, and an individually rational pre-imputation is called an imputation. Most solution concepts are imputations.
The stable set
The stable set of a game (also known as the von Neumann-Morgenstern solution (von Neumann & Morgenstern 1944)) was the first solution proposed for games with more than 2 players. Let  be a game and let
 be a game and let  ,
,  be two imputations of
 be two imputations of  . Then
. Then  dominates
 dominates  if some coalition
 if some coalition  satisfies
 satisfies  and
 and  . In other words, players in
. In other words, players in  prefer the payoffs from
 prefer the payoffs from  to those from
 to those from  , and they can threaten to leave the grand coalition if
, and they can threaten to leave the grand coalition if  is used because the payoff they obtain on their own is at least as large as the allocation they receive under
 is used because the payoff they obtain on their own is at least as large as the allocation they receive under  .
.
A stable set is a set of imputations that satisfies two properties:
- Internal stability: No payoff vector in the stable set is dominated by another vector in the set.
- External stability: All payoff vectors outside the set are dominated by at least one vector in the set.
Von Neumann and Morgenstern saw the stable set as the collection of acceptable behaviours in a society: None is clearly preferred to any other, but for each unacceptable behaviour there is a preferred alternative. The definition is very general allowing the concept to be used in a wide variety of game formats.
Properties
- A stable set may or may not exist (Lucas 1969), and if it exists it is typically not unique (Lucas 1992). Stable sets are usually difficult to find. This and other difficulties have led to the development of many other solution concepts.
- A positive fraction of cooperative games have unique stable sets consisting of the core (Owen 1995, p. 240.).
-  A positive fraction of cooperative games have stable sets which discriminate  players. In such sets at least players. In such sets at least of the discriminated players are excluded (Owen 1995, p. 240.). of the discriminated players are excluded (Owen 1995, p. 240.).
The core
Let  be a game. The core of
 be a game. The core of  is the set of payoff vectors
 is the set of payoff vectors
In words, the core is the set of imputations under which no coalition has a value greater than the sum of its members' payoffs. Therefore, no coalition has incentive to leave the grand coalition and receive a larger payoff.
Properties
- The core of a game may be empty (see the Bondareva–Shapley theorem). Games with non-empty cores are called balanced.
- If it is non-empty, the core does not necessarily contain a unique vector.
- The core is contained in any stable set, and if the core is stable it is the unique stable set (see (Driessen 1988) for a proof.)
The core of a simple game with respect to preferences
For simple games, there is another notion of the core, when each player is assumed to have preferences on a set  of alternatives.
A profile is a list
 of alternatives.
A profile is a list  of individual preferences
 of individual preferences  on
 on  .
Here
.
Here  means that individual
 means that individual  prefers alternative
 prefers alternative  to
to  at profile
 at profile  .
Given a simple game
.
Given a simple game  and a profile
 and a profile  , a dominance relation
, a dominance relation  is defined
on
 is defined
on  by
 by  if and only if there is a winning coalition
 if and only if there is a winning coalition  (i.e.,
(i.e.,  ) satisfying
) satisfying  for all
 for all  .
The core
.
The core  of the simple game
 of the simple game  with respect to the profile
 with respect to the profile  of preferences
is the set of alternatives undominated by
 of preferences
is the set of alternatives undominated by  (the set of maximal elements of
(the set of maximal elements of  with respect to
 with respect to  ):
):
-   if and only if there is no if and only if there is no such that such that . .
The Nakamura number of a simple game is the minimal number of winning coalitions with empty intersection.
Nakamura's theorem states that the core  is nonempty for all profiles
 is nonempty for all profiles  of acyclic (alternatively, transitive) preferences
if and only if
 of acyclic (alternatively, transitive) preferences
if and only if  is finite and the cardinal number (the number of elements) of
 is finite and the cardinal number (the number of elements) of  is less than the Nakamura number of
 is less than the Nakamura number of  .
A variant by Kumabe and Mihara states that the core
.
A variant by Kumabe and Mihara states that the core  is nonempty for all profiles
 is nonempty for all profiles  of preferences that have a maximal element
if and only if the cardinal number of
 of preferences that have a maximal element
if and only if the cardinal number of  is less than the Nakamura number of
 is less than the Nakamura number of  .  (See Nakamura number for details.)
.  (See Nakamura number for details.)
The strong epsilon-core
Because the core may be empty, a generalization was introduced in (Shapley & Shubik 1966). The strong  -core for some number
-core for some number  is the set of payoff vectors
 is the set of payoff vectors
In economic terms, the strong  -core is the set of pre-imputations where no coalition can improve its payoff by leaving the grand coalition, if it must pay a penalty of
-core is the set of pre-imputations where no coalition can improve its payoff by leaving the grand coalition, if it must pay a penalty of  for leaving. Note that
 for leaving. Note that  may be negative, in which case it represents a bonus for leaving the grand coalition. Clearly, regardless of whether the core is empty, the strong
 may be negative, in which case it represents a bonus for leaving the grand coalition. Clearly, regardless of whether the core is empty, the strong  -core will be non-empty for a large enough value of
-core will be non-empty for a large enough value of  and empty for a small enough (possibly negative) value of
 and empty for a small enough (possibly negative) value of  . Following this line of reasoning, the least-core, introduced in (Maschler, Peleg & Shapley 1979), is the intersection of all non-empty strong
. Following this line of reasoning, the least-core, introduced in (Maschler, Peleg & Shapley 1979), is the intersection of all non-empty strong  -cores. It can also be viewed as the strong
-cores. It can also be viewed as the strong  -core for the smallest value of
-core for the smallest value of  that makes the set non-empty (Bilbao 2000).
 that makes the set non-empty (Bilbao 2000).
The Shapley value
The Shapley value is the unique payoff vector that is efficient, symmetric, additive, and assigns zero payoffs to dummy players. It was introduced by Lloyd Shapley (Shapley 1953). The Shapley value of a superadditive game is individually rational, but this is not true in general. (Driessen 1988)
The kernel
Let  be a game, and let
 be a game, and let  be an efficient payoff vector. The maximum surplus of player i over player j with respect to x is
 be an efficient payoff vector. The maximum surplus of player i over player j with respect to x is
the maximal amount player i can gain without the cooperation of player j by withdrawing from the grand coalition N under payoff vector x, assuming that the other players in i's withdrawing coalition are satisfied with their payoffs under x. The maximum surplus is a way to measure one player's bargaining power over another. The kernel of  is the set of imputations x that satisfy
 is the set of imputations x that satisfy
-   , and , and
-   
for every pair of players i and j. Intuitively, player i has more bargaining power than player j with respect to imputation x if  , but player j is immune to player i's threats if
, but player j is immune to player i's threats if  , because he can obtain this payoff on his own. The kernel contains all imputations where no player has this bargaining power over another. This solution concept was first introduced in (Davis & Maschler 1965).
, because he can obtain this payoff on his own. The kernel contains all imputations where no player has this bargaining power over another. This solution concept was first introduced in (Davis & Maschler 1965).
The nucleolus
Let  be a game, and let
 be a game, and let  be a payoff vector. The excess of
 be a payoff vector. The excess of  for a coalition
 for a coalition  is the quantity
 is the quantity  ; that is, the gain that players in coalition
; that is, the gain that players in coalition  can obtain if they withdraw from the grand coalition
 can obtain if they withdraw from the grand coalition  under payoff
 under payoff  and instead take the payoff
 and instead take the payoff  .
.
Now let  be the vector of excesses of
 be the vector of excesses of  , arranged in non-increasing order. In other words,
, arranged in non-increasing order. In other words,  . Notice that
. Notice that  is in the core of
 is in the core of  if and only if it is a pre-imputation and
 if and only if it is a pre-imputation and  . To define the nucleolus, we consider the lexicographic ordering of vectors in
. To define the nucleolus, we consider the lexicographic ordering of vectors in  : For two payoff vectors
: For two payoff vectors  , we say
, we say  is lexicographically smaller than
 is lexicographically smaller than  if for some index
 if for some index  , we have
, we have  and
 and  . (The ordering is called lexicographic because it mimics alphabetical ordering used to arrange words in a dictionary.) The nucleolus of
. (The ordering is called lexicographic because it mimics alphabetical ordering used to arrange words in a dictionary.) The nucleolus of  is the lexicographically minimal imputation, based on this ordering. This solution concept was first introduced in (Schmeidler 1969).
 is the lexicographically minimal imputation, based on this ordering. This solution concept was first introduced in (Schmeidler 1969).
Although the definition of the nucleolus seems abstract, (Maschler, Peleg & Shapley 1979) gave a more intuitive description: Starting with the least-core, record the coalitions for which the right-hand side of the inequality in the definition of  cannot be further reduced without making the set empty. Continue decreasing the right-hand side for the remaining coalitions, until it cannot be reduced without making the set empty. Record the new set of coalitions for which the inequalities hold at equality; continue decreasing the right-hand side of remaining coalitions and repeat this process as many times as necessary until all coalitions have been recorded. The resulting payoff vector is the nucleolus.
 cannot be further reduced without making the set empty. Continue decreasing the right-hand side for the remaining coalitions, until it cannot be reduced without making the set empty. Record the new set of coalitions for which the inequalities hold at equality; continue decreasing the right-hand side of remaining coalitions and repeat this process as many times as necessary until all coalitions have been recorded. The resulting payoff vector is the nucleolus.
Properties
- Although the definition does not explicitly state it, the nucleolus is always unique. (See Section II.7 of (Driessen 1988) for a proof.)
- If the core is non-empty, the nucleolus is in the core.
- The nucleolus is always in the kernel, and since the kernel is contained in the bargaining set, it is always in the bargaining set (see (Driessen 1988) for details.)
Convex cooperative games
Introduced by Shapley in (Shapley 1971), convex cooperative games capture the intuitive property some games have of "snowballing". Specifically, a game is convex if its characteristic function  is supermodular:
 is supermodular:
It can be shown (see, e.g., Section V.1 of (Driessen 1988)) that the supermodularity of  is equivalent to
 is equivalent to
that is, "the incentives for joining a coalition increase as the coalition grows" (Shapley 1971), leading to the aforementioned snowball effect. For cost games, the inequalities are reversed, so that we say the cost game is convex if the characteristic function is submodular.
Properties
Convex cooperative games have many nice properties:
- Supermodularity trivially implies superadditivity.
- Convex games are totally balanced: The core of a convex game is non-empty, and since any subgame of a convex game is convex, the core of any subgame is also non-empty.
- A convex game has a unique stable set that coincides with its core.
- The Shapley value of a convex game is the center of gravity of its core.
-  An extreme point (vertex) of the core can be found in polynomial time using the greedy algorithm: Let  be a permutation of the players, and let be a permutation of the players, and let be the set of players ordered be the set of players ordered through through in in , for any , for any , with , with . Then the payoff . Then the payoff defined by defined by is a vertex of the core of is a vertex of the core of . Any vertex of the core can be constructed in this way by choosing an appropriate permutation . Any vertex of the core can be constructed in this way by choosing an appropriate permutation . .
Similarities and differences with combinatorial optimization
Submodular and supermodular set functions are also studied in combinatorial optimization. Many of the results in (Shapley 1971) have analogues in (Edmonds 1970), where submodular functions were first presented as generalizations of matroids. In this context, the core of a convex cost game is called the base polyhedron, because its elements generalize base properties of matroids.
However, the optimization community generally considers submodular functions to be the discrete analogues of convex functions (Lovász 1983), because the minimization of both types of functions is computationally tractable. Unfortunately, this conflicts directly with Shapley's original definition of supermodular functions as "convex".
See also
References
- ↑   denotes the power set of denotes the power set of . .
- ↑ Peleg, B. (2002). "Chapter 8 Game-theoretic analysis of voting in committees". Handbook of Social Choice and Welfare Volume 1. Handbook of Social Choice and Welfare 1. pp. 195–201. doi:10.1016/S1574-0110(02)80012-1. ISBN 9780444829146.
- ↑ See a section for Rice's theorem for the definition of a computable simple game. In particular, all finite games are computable.
- ↑ Kumabe, M.; Mihara, H. R. (2011). "Computability of simple games: A complete investigation of the sixty-four possibilities" (PDF). Journal of Mathematical Economics 47 (2): 150–158. doi:10.1016/j.jmateco.2010.12.003.
- ↑ Modified from Table 1 in Kumabe and Mihara (2011). The sixteen Types are defined by the four conventional axioms (monotonicity, properness, strongness, and non-weakness). For example, type 1110 indicates monotonic (1), proper (1), strong (1), weak (0, because not nonweak) games. Among type 1110 games, there exist no finite non-computable ones, there exist finite computable ones, there exist no infinite non-computable ones, and there exist no infinite computable ones. Observe that except for type 1110, the last three columns are identical.
- ↑ Kumabe, M.; Mihara, H. R. (2008). "The Nakamura numbers for computable simple games". Social Choice and Welfare 31 (4): 621. doi:10.1007/s00355-008-0300-5.
- ↑ Aumann, Robert J. "The core of a cooperative game without side payments." Transactions of the American Mathematical Society (1961): 539-552.
Further reading
- Bilbao, Jesús Mario (2000), Cooperative Games on Combinatorial Structures, Kluwer Academic Publishers
- Davis, M.; Maschler, M. (1965), "The kernel of a cooperative game", Naval Research Logistics Quarterly 12 (3): 223–259, doi:10.1002/nav.3800120303
- Driessen, Theo (1988), Cooperative Games, Solutions and Applications, Kluwer Academic Publishers
- Edmonds, Jack (1970), "Submodular functions, matroids and certain polyhedra", in Guy, R.; Hanani, H.; Sauer, N.; Schönheim, J., Combinatorial Structures and Their Applications, New York: Gordon and Breach, pp. 69–87
- Lovász, Lászlo (1983), "Submodular functions and convexity", in Bachem, A.; Grötschel, M.; Korte, B., Mathematical Programming—The State of the Art, Berlin: Springer, pp. 235–257
- Leyton-Brown, Kevin; Shoham, Yoav (2008), Essentials of Game Theory: A Concise, Multidisciplinary Introduction, San Rafael, CA: Morgan & Claypool Publishers, ISBN 978-1-59829-593-1. An 88-page mathematical introduction; see Chapter 8. Free online(subscription required) at many universities.
- Lucas, William F. (1969), "The Proof That a Game May Not Have a Solution", Transactions of the American Mathematical Society (American Mathematical Society) 136: 219–229, doi:10.2307/1994798, JSTOR 1994798.
- Lucas, William F. (1992), "Von Neumann-Morgenstern Stable Sets", in Aumann, Robert J.; Hart, Sergiu, Handbook of Game Theory, Volume I, Amsterdam: Elsevier, pp. 543–590
- Luce, R.D. and Raiffa, H. (1957) Games and Decisions: An Introduction and Critical Survey, Wiley & Sons. (see Chapter 8).
- Maschler, M.; Peleg, B.; Shapley, Lloyd S. (1979), "Geometric properties of the kernel, nucleolus, and related solution concepts", Mathematics of Operations Research 4 (4): 303–338, doi:10.1287/moor.4.4.303
- Osborne, M.J. and Rubinstein, A. (1994) A Course in Game Theory, MIT Press (see Chapters 13,14,15)
- Moulin, Herve (1988), Axioms of Cooperative Decision Making (1st ed.), Cambridge: Cambridge University Press, ISBN 0-521-42458-5
- Owen, Guillermo (1995), Game Theory (3rd ed.), San Diego: Academic Press, ISBN 0-12-531151-6
- Schmeidler, D. (1969), "The nucleolus of a characteristic function game", SIAM Journal of Applied Mathematics 17 (6): 1163–1170, doi:10.1137/0117107.
-  Shapley, Lloyd S. (1953), "A value for  -person games",  in Kuhn, H.; Tucker, A.W., Contributions to the Theory of Games II, Princeton, New Jersey: Princeton University Press, pp. 307–317 -person games",  in Kuhn, H.; Tucker, A.W., Contributions to the Theory of Games II, Princeton, New Jersey: Princeton University Press, pp. 307–317
- Shapley, Lloyd S. (1971), "Cores of convex games", International Journal of Game Theory 1 (1): 11–26, doi:10.1007/BF01753431
- Shapley, Lloyd S.; Shubik, M. (1966), "Quasi-cores in a monetary economy with non-convex preferences", Econometrica (The Econometric Society) 34 (4): 805–827, doi:10.2307/1910101, JSTOR 1910101
- Shoham, Yoav; Leyton-Brown, Kevin (2009), Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, New York: Cambridge University Press, ISBN 978-0-521-89943-7. A comprehensive reference from a computational perspective; see Chapter 12. Downloadable free online.
- von Neumann, John; Morgenstern, Oskar (1944), Theory of Games and Economic Behavior, Princeton: Princeton University Press
- Yeung, David W.K. and Leon A. Petrosyan. Cooperative Stochastic Differential Games (Springer Series in Operations Research and Financial Engineering), Springer, 2006. Softcover-ISBN 978-1441920942.
- Yeung, David W.K. and Leon A. Petrosyan. Subgame Consistent Economic Optimization: An Advanced Cooperative Dynamic Game Analysis (Static & Dynamic Game Theory: Foundations & Applications), Birkhäuser Boston; 2012. ISBN 978-0817682613
External links
- Hazewinkel, Michiel, ed. (2001), "Cooperative game", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4






