Binary compounds of silicon

Binary compounds of silicon are binary chemical compounds containing just silicon and another chemical element.[1] Technically the term silicide is reserved for any compounds containing silicon bonded to a more electropositive element. Binary silicon compounds can be grouped into several classes. Saltlike silicides are formed with group 1 and group 2 elements. Covalent silicides occur in compounds with groups 10 to 17.

Transition metals form metallic silicides with the some exceptions: silver, gold and the group 12 elements. The general composition is MnSi or MSin with n ranging from 1 to 6. Examples are M5Si, M3Si (Cu, V, Cr, Mo, Mn, Fe, Pt, U), M2Si (Zr, Hf, Ta, Ir, Ru, Rh, Co, Ni, Ce), M3Si2 (Hf, Th, U), MSi (Ti, Zr, Hf, Fe, Ce, Th, Pu) and MSi2 (Ti, V, Nb, Ta, Cr, Mo, W, Re)

The Kopp–Neumann law applies as:

Cp(M,Si,) = xCp(M) + yCp(Si)

As a general rule nonstochiometry implies instability. These intermetallics are in general resistant to hydrolysis, brittle, and melt at a lower temperature than the corresponding carbides or borides. They are electrical conductors. However, some, such as CrSi2, Mg2Si, β-FeSi2 and MnSi1.7, are semiconductors. Since degenerate semiconductors exhibit some metallic properties, such as luster and electrical conductivity which decreases with temperature, some silicides classified as metals may be semiconductors.

Group 1

Silicides of group 1 elements are saltlike silicides, except for silane (SiH4) whose bonds to hydrogen are covalent. Higher silane homologues are disilane and trisilane. Polysilicon hydride is a two-dimensional polymer network. For lithium silicide many cluster compounds are known for example Li13Si4, Li22Si5, Li7Si3 and Li12Si7.[2] Li4.4Si is prepared from silicon and lithium metal in high-energy Ball mill process.[3] Potential uses: electrode in lithium batteries. Li12Si7 has a Zintl phase with planar Si56− rings. Li NMR spectroscopy suggests these rings are aromatic.[4]

Other group 1 elements also form clusters: sodium silicide can be represented by NaSi, NaSi2 and Na11Si36[5] and potassium silicide by K8Si46. Group 1 silicides are in general high melting, metallic grey, with moderate to poor electrical conductance and prepared by heating the elements. Superconducting properties have been reported for Ba8Si46.[6] Several silicon Zintl ions (Si44− Si94−, Si52−) are known with group 1 counter ions.[7]

Group 2

Silicides of group 2 elements are also saltlike silicides except for beryllium whose phase diagram with silicon is a simple eutectic (1085 °C @ 60% by weight silicon).[8] Again there is variation in composition: magnesium silicide is represented by Mg2Si,[9] calcium silicide can be represented by Ca2Si, CaSi2, Ca5Si3 and by Ca14Si19,[10] strontium silicide can be represented by Sr2Si, SrSi2 and Sr5Si3[11] and barium silicide can be represented by Ba2Si, BaSi2, Ba5Si3 and Ba3Si4.[12] Mg2Si, and its solid solutions with Mg2Ge and Mg2Sn, are good thermoelectric materials and their figure of merit values are comparable with those of established materials.

Transition metals

The transition metals form a wide range of silicon intermetallics with at least one binary crystalline phase. Some exceptions exist. Gold forms a eutectic at 363 °C with 2.3% silicon by weight (18% atom percent) without mutual solubility in the solid state.[13] Silver forms another eutectic at 835 °C with 11% silicon by weight, again with negligible mutual solid state solubility. In group 12 all elements form a eutectic close to the metal melting point without mutual solid-state solubility: zinc at 419 °C and > 99 atom percent zinc and cadmium at 320 °C (< 99% Cd).

Commercially relevant intermetallics are group 6 molybdenum disilicide, a commercial ceramic mostly used as an heating element. Tungsten disilicide is also a commercially available ceramic with uses in microelectronics. Platinum silicide is a semiconductor material. Ferrosilicon is an iron alloy that also contains some calcium and aluminium.

MnSi known as brownleeite can be found in outer space. Several Mn silicides form a Nowotny phase. Nanowires based on silicon and manganese are also known. They can be synthesised from Mn(CO)5SiCl3 forming nanowired based on Mn19Si33.[14] or grown on a silicon surface[15][16][17] MnSi1.73 was investigated as thermoelectric material[18] and as an optoelectronic thin film.[19] Single-crystal MnSi1.73 can form from a tin-lead melt[20]

In the frontiers of technological research, iron disilicide is becoming more and more relevant to optoelectronics, specially in its crystalline form β-FeSi2.[21][22] They are used as thin films or as nanoparticles, obtained by means of epitaxial growth on a silicon substrate.[23][24]

List of reported silicon intermetallics
Atomic number Name Symbol Group Period Block Phases Element type
21 Scandium Sc 3 4 d Sc5Si3, ScSi, Sc2Si3,[25] Sc5Si4[26][27][28] Transition metal
22 Titanium Ti 4 4 d Ti5Si3, TiSi, TiSi2, TiSi3, Ti6Si4[25] Transition metal
23 Vanadium V 5 4 d V3Si, V5Si3, V6Si5, VSi2, V6Si5[25][29] Transition metal
24 Chromium Cr 6 4 d Cr3Si, Cr5Si3, CrSi, CrSi2[25][30] Transition metal
25 Manganese Mn 7 4 d MnSi, Mn9Si2, Mn3Si, Mn5Si3, Mn11Si9[25] Transition metal
26 Iron Fe 8 4 d Fe3Si, FeSi (ferrosilicon),[31][32] FeSi2 Transition metal
27 Cobalt Co 9 4 d CoSi, CoSi2, Co2Si, Co2Si, Co3Si[33][34] Transition metal
28 Nickel Ni 10 4 d Ni3Si, Ni31Si12, Ni2Si, Ni3Si2, NiSi, NiSi2[25][35] Transition metal
29 Copper Cu 11 4 d Cu17Si3, Cu56Si11,Cu5Si, Cu33Si7, Cu4Si, Cu19Si6,Cu3Si,Cu87Si13[25][36] Transition metal
30 Zinc Zn 12 4 d eutectic[37] Transition metal
39 Yttrium Y 3 4 d Y5Si3, Y5Si4, YSi, Y3Si5,[38][39] YSi1.4.[40] Transition metal
40 Zirconium Zr 4 5 d Zr5Si3, Zr5Si4, ZrSi, ZrSi2,[25] Zr3Si2, Zr2Si, Zr3Si[41] Transition metal
41 Niobium Nb 5 5 d Nb5Si3, Nb4Si[25] Transition metal
42 Molybdenum Mo 6 5 d Mo3Si, Mo5Si3, MoSi2[25] Transition metal
43 Technetium Tc 7 5 d Tc4Si7 (proposed)[42] Transition metal
44 Ruthenium Ru 8 5 d Ru2Si, Ru4Si3, RuSi, Ru2Si3[43][44] Transition metal
45 Rhodium Rh 9 5 d RhSi,[45] Rh2Si, Rh5Si3, Rh3Si2, Rh20Si13[46] Transition metal
46 Palladium Pd 10 5 d Pd5Si, Pd9Si2, Pd3Si, Pd2Si, PdSi[47] Transition metal
47 Silver Ag 11 5 d eutectic[48] Transition metal
48 Cadmium Cd 12 5 d eutectic[49] Transition metal
57 Lanthanum La 3 6 f La5Si3, La3Si2, La5Si4, LaSi, LaSi2[50] Lanthanide
58 Cerium Ce 3 6 f Ce5Si3, Ce3Si2, Ce5Si4, CeSi,[51] Ce3Si5, CeSi2[52] Lanthanide
59 Praseodymium Pr 3 6 f Pr5Si3, Pr3Si2, Pr5Si4, PrSi, PrSi2[53] Lanthanide
60 Neodymium Nd 3 6 f Nd5Si3, Nd5Si4, Nd5Si3,NdSi, Nd3Si4, Nd2Si3, NdSix[54] Lanthanide
61 Promethium Pm 3 6 f Lanthanide
62 Samarium Sm 3 6 f Sm5Si4, Sm5Si3, SmSi, Sm3Si5, SmSi2[55][56] Lanthanide
63 Europium Eu 3 6 f Lanthanide
64 Gadolinium Gd 3 6 f Gd5Si3, Gd5Si4, gdSi, GdSi2[57] Lanthanide
65 Terbium Tb 3 6 f Si2Tb (terbium silicide), SiTb, Si4Tb5, Si3Tb5[58] Lanthanide
66 Dysprosium Dy 3 6 f Dy5Si5, DySi, DySi2[59] Lanthanide
67 Holmium Ho 3 6 f Ho5Si3,Ho5Si4,HoSi,Ho4Si5,HoSi2[60] Lanthanide
68 Erbium Er 3 6 f Er5Si3, Er5Si4, ErSi, ErSi2[61] Lanthanide
69 Thulium Tm 3 6 f Lanthanide
70 Ytterbium Yb 3 6 f Si1.8Yb,Si5Yb3,Si4Yb3, SiYb, Si4Yb5, Si3Yb5[62] Lanthanide
71 Lutetium Lu 3 6 d Lu5Si3[63] Lanthanide
72 Hafnium Hf 4 6 d Hf2Si, Hf3Si2, HfSi, Hf5Si4, HfSi2[25][64] Transition metal
73 Tantalum Ta 5 6 d Ta9Si2, Ta3Si, Ta5Si3[25] Transition metal
74 Tungsten W 6 6 d W5Si3, WSi2[65] Transition metal
75 Rhenium Re 7 6 d Re2Si, ReSi, ReSi1.8[66] Re5Si3[25] Transition metal
76 Osmium Os 8 6 d OsSi, Os2Si3, OsSi2[67] Transition metal
77 Iridium Ir 9 6 d IrSi, Ir4Si5, Ir3Si4, Ir3Si5, IrSi3. Ir2Si3, Ir4Si7, IrSi2[68][69] Transition metal
78 Platinum Pt 10 6 d Pt25Si7, Pt17Si8, Pt6Si5, Pt5Si2, Pt3Si, Pt2Si, PtSi[70] Transition metal
79 Gold Au 11 6 d Eutectic diagram at link[71] Transition metal
80 Mercury Hg 12 6 d eutectic[72] Transition metal
89 Actinium Ac 3 7 f Actinide
90 Thorium Th 3 7 f Th3Si2, ThSi, Th3Si5, and ThSi2-x[73] Actinide
91 Protactinium Pa 3 7 f Actinide
92 Uranium U 3 7 f U3Si, U3Si2, USi, U3Si5, USi2-x, USi2 and USi3[74] Actinide
93 Neptunium Np 3 7 f NpSi3, Np3Si2, and NpSi[75] Actinide
94 Plutonium Pu 3 7 f Pu5Si3, Pu3Si2, PuSi, Pu3Si5 and PuSi2[76] Actinide
95 Americium Am 3 7 f AmSi, AmSi2[77] Actinide
96 Curium Cm 3 7 f CmSi, Cm2Si3, CmSi2[78] Actinide
97 Berkelium Bk 3 7 f Actinide
98 Californium Cf 3 7 f Actinide
99 Einsteinium Es 3 7 f Actinide
100 Fermium Fm 3 7 f Actinide
101 Mendelevium Md 3 7 f Actinide
102 Nobelium No 3 7 f Actinide
103 Lawrencium Lr 3 7 d Actinide

Group 13

In group 13 boron (a metalloid) forms several binary crystalline silicon boride compounds: SiB3, SiB6, SiBn.[79] With aluminium post-transition metal a eutectic is formed (577 °C @ 12.2 atom % Al) with maximum solubility of silicon in solid aluminum of 1.5%. Commercially relevant aluminium alloys containing silicon have at least element added.[80] Gallium an post-transition metal forms a eutectic at 29 °C with 99.99% Ga without mutual solid-state solubility[81] indium [82] and thallium[83] behave similarly.

Group 14

Silicon carbide (SiC) is widely used as a ceramic or example in car brakes and bulletproof vests. It is also used in semiconductor electronics. It is manufactured from silicon dioxide and carbon in an Acheson furnace between 1600 and 2500 °C. There are 250 known crystalline forms with alpha silicon carbide the most common. Silicon itself is an important semiconductor material used in microchips. It is produced commercially from silica and carbon at 1900 °C and crystallizes in a diamond cubic crystal structure. Germanium silicide forms a solid solution and is again a commercially used semiconductor material.[84] The tin - silicon phase diagram is a eutectic[85] and the lead - silicon phase diagram shows a monotectic transition and a small eutectic transition but no solid solubility.[86]

Group 15

Silicon nitride (Si3N4) is a ceramic with many commercial high-temperature applications such as engine parts. It can be synthesized from the elements at temperatures between 1300 and 1400 °C. Three different crystallographic forms exist. Other binary silicon nitrogen compounds have been proposed (SiN, Si2N3, Si3N)[87] and other SiN compounds have been investigated at cryogenic temperatures (SiN2, Si(N2)2, SiNNSi ).[88] Silicon tetraazide is an unstable compound that easily detonates.

The phase diagram with phosphorus shows SiP and SiP2.[89] A reported silicon phosphide is Si12P5 (no practical applications),[90][91] formed by annealing an amorphous Si-P alloy.

The arsenic - silicon phase diagram measured at 40 Bar has two phases: SiAs and SiAs2.[92] The Antimony- silicon system is a single eutectic close to the melting point of Sb.[93] The bismuth system is a monotectic [94]

Group 16

In group 16 silicon dioxide is a very common compound that widely occurs as sand or quartz. SiO2 is tetrahedral with each silicon atom surrounded by 4 oxygen atoms. Numerous crystalline forms exist with the tetrahedra linked to form a polymeric chain. Examples are tridymite and cristobalite. A less common oxide is silicon monoxide that can be found in outer space. Unconfirmed reports exist for nonequilibrium Si2O, Si3O2, Si3O4, Si2O3 and Si3O5.[95] Silicon sulfide is also a chain compound. Cyclic SiS2 has been reported to exist in the gas phase.[96] The phase diagram of silicon with selenium has two phases: SiSe2 and SiSe.[97] Tellurium silicide is a semiconductor with formula TeSi2 or Te2Si3.[98]

Group 17

Binary silicon compounds in group 17 are stable compounds ranging from gaseous silicon fluoride (SiF4) to the liquids silicon chloride (SiCl4 and silicon bromide SiBr4) to the solid silicon iodide (SiI4). The molecular geometry in these compounds is tetrahedral and the bonding mode covalent. Other known stable fluorides in this group are Si2F6, Si3F8 (liquid) and polymeric solids known as polysilicon fluorides (SiF2)x and (SiF)x. The other halides form similar binary silicon compounds.[99]

The periodic table of the binary silicon compounds

SiH4 He
LiSi Be SiB3 SiC Si3N4 SiO2 SiF4 Ne
NaSi Mg2Si Al Si SiP SiS2 SiCl4 Ar
KSi CaSi2 ScSi TiSi V5Si3 Cr5Si3 MnSi FeSi CoSi NiSi Cu5Si Zn Ga Si1−xGex SiAs SiSe2 SiBr4 Kr
RbSi Sr2Si YSi ZrSi Nb5Si3 Mo5Si3 Tc RuSi RhSi PdSi Ag Cd In Sn Sb TeSi2 SiI4 Xe
CsSi Ba2Si HfSi Ta5Si3 W5Si3 ReSi2 OsSi IrSi PtSi Au Hg Tl Pb Bi Po At Rn
Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
LaSi CeSi PrSi NdSi Pm SmSi EuSi GdSi TbSi DySi HoSi ErSi Tm YbSi LuSi
Ac ThSi Pa USi NpSi PuSi AmSi CmSi Bk Cf Es Fm Md No Lr
Binary compounds of silicon
Covalent silicon compounds metallic silicides.
Ionic silicides Do not exist
Eutectic / monotectic / solid solution Unknown / Not assessed

>

References

  1. Inorganic chemistry, Egon Wiberg,Nils Wiberg,Arnold Frederick Holleman
  2. The Li-Si (Lithium-Silicon) system H. Okamoto Journal of Phase Equilibria Volume 11, Number 3, 306-312, doi:10.1007/BF03029305
  3. Solid state ionics for batteries, Tsutomu Minami,Masahiro Tatsumisago
  4. Bacsa, J., Hanke, F., Hindley, S., Odedra, R., Darling, G. R., Jones, A. C. and Steiner, A. (2011), The Solid-State Structures of Dimethylzinc and Diethylzinc. Angewandte Chemie International Edition, 50: 11685–11687. doi:10.1002/anie.201105099
  5. The na-si (sodium-silicon) system J Songster and A.D Pelton Journal of Phase Equilibria Volume 13, Number 1, 67-69, doi:10.1007/BF02645381
  6. High-Pressure Synthesis of a New Silicon Clathrate Superconductor, Ba8Si46 Shoji Yamanaka, Eiji Enishi, Hiroshi Fukuoka, and Masahiro Yasukawa Inorg. Chem., 2000, 39 (1), pp 56–58 doi:10.1021/ic990778p
  7. Scharfe, S., Kraus, F., Stegmaier, S., Schier, A. and Fässler, T. F. (2011), Zintl Ions, Cage Compounds, and Intermetalloid Clusters of Group 14 and Group 15 Elements. Angewandte Chemie International Edition, 50: 3630–3670. doi: 10.1002/anie.201001630
  8. Be-Si (Beryllium-Silicon) H. Okamoto Journal of Phase Equilibria and Diffusion Volume 30, Number 1, 115, doi:10.1007/s11669-008-9433-6
  9. The Mg−Si (Magnesium-Silicon) system A. A. Nayeb-Hashemi and J. B. Clark Journal of Phase Equilibria Volume 5, Number 6, 584-592, doi:10.1007/BF02868321
  10. Ca14Si19 – a Zintl Phase with a Novel Twodimensional Silicon Framework Zeitschrift für anorganische und allgemeine Chemie Volume 622, Issue 3, März 1996, Pages: 501–508, Antonio Currao, Steffen Wengert, Reinhard Nesper, Jan Curda and H. Hillebrecht doi:10.1002/zaac.19966220319
  11. The Si-Sr (Silicon-Strontium) system V. P. Itkin and C. B. Alcock Journal of Phase Equilibria Volume 10, Number 6, 630-634, doi:10.1007/BF02877630
  12. The Metallic Zintl Phase Ba3Si4 – Synthesis, Crystal Structure, Chemical Bonding, and Physical Properties Zeitschrift für anorganische und allgemeine Chemie Volume 634, Issue 10, August 2008, Pages: 1651–1661, Umut Aydemir, Alim Ormeci, Horst Borrmann, Bodo Böhme, Fabio Zürcher, Burcu Uslu, Thorsten Goebel, Walter Schnelle, Paul Simon, Wilder Carrillo-Cabrera, Frank Haarmann, Michael Baitinger, Reinhard Nesper, Hans Georg von Schnering and Yuri Grin doi:10.1002/zaac.200800116
  13. Constitution of Binary Alloys, second edition, Max Hansen and Kurt Anderko, McGraw-Hill Book Co., (NY NY 1958) p. 232 and EG Heath, J. of Electro Control, 11, 1961, pp 13-15 as summarized in Constitution of Binary Alloys, First Supplement, Elliott, McGraw-Hill Book Inc., (NY NY 1965) p. 103
  14. Higher Manganese Silicide Nanowires of Nowotny Chimney Ladder Phase Jeremy M. Higgins, Andrew L. Schmitt, Ilia A. Guzei and Song Jin J. Am. Chem. Soc., 2008, 130 (47), pp 16086–16094 doi:10.1021/ja8065122
  15. Formation of manganese silicide nanowires on Si(111) surfaces by the reactive epitaxy method. Dan Wang and Zhi-Qiang Zou 2009 Nanotechnology 20 275607 doi:10.1088/0957-4484/20/27/275607
  16. Ostwald ripening of manganese silicide islands on Si(001) M. R. Krause, A. Stollenwerk, M. Licurse, and V. P. LaBella J. Vac. Sci. Technol. A 24, 1480 (2006); doi:10.1116/1.2167070
  17. Preparation of manganese silicide thin films by solid phase reaction Jinliang Wang, Masaaki Hirai, Masahiko Kusaka and Motohiro Iwami Applied Surface Science Volumes 113-114, April 1997, Pages 53-56 doi:10.1016/S0169-4332(96)00823-9
  18. Synthesis of Thermoelectric Manganese Silicide by Mechanical Alloying and Pulse Discharge Sintering Takashi Itoh and Masataka Yamada Journal of Electronic Materials Volume 38, Number 7, 925-929, doi:10.1007/s11664-009-0697-3
  19. The potential of higher manganese silicide as an optoelectronic thin film material John E. Mahan Thin Solid Films Volume 461, Issue 1, 2 August 2004, Pages 152-159 doi:10.1016/j.tsf.2004.02.090
  20. Crystallization of highest manganese silicide MnSi1.71–1.75 from tin-lead solution-melt F. Yu. Solomkin, V. K. Zaitsev, N. F. Kartenko, A. S. Kolosova, A. Yu. Samunin and G. N. Isachenko Technical Physics Volume 53, Number 12, 1636-1637, doi:10.1134/S1063784208120190
  21. Wetzig, Klaus; Schneider, Claus Michael (eds.). Metal based thin films for electronics. Wiley-VCH, 2006 (2nd edition), p. 64. ISBN 3-527-40650-6
  22. A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm. D. Leong, M. Harry, K. J. Reeson and K. P. Homewood. Nature 387, 686-688, 12 June 1997.
  23. Heteroepitaxy of β-FeSi2 on Si by gas-source MBE. A. Rizzi, B. N. E. Rösen, D. Freundt, C. Dieker, H. Lüth and D. Gerthsen. Physical Review B, Volume 51, Issue 24, 17780–17794 (1995). doi:10.1103/PhysRevB.51.17780
  24. Surface electron‐diffraction patterns of β‐FeSi2 films epitaxially grown on silicon. J. E. Mahan, V. L. Thanh, J. Chevrier, I. Berberzier, J. Derrien, and R. G. Long. Journal of Applied Physics, Volume 74, Issue 3, 1747 (1993).doi:10.1063/1.354804
  25. 1 2 3 4 5 6 7 8 9 10 11 12 13 Thermodynamics of solid transition-metal silicides Mark E. Schlesinger Chem. Rev., 1990, 90 (4), pp 607–628 doi:10.1021/cr00102a003
  26. Phases in rapidly cooled scandium-silicon samples V. Kotroczo and I.J. McColm Journal of Alloys and Compounds Volume 203, 4 January 1994, Pages 259-265 doi:10.1016/0925-8388(94)90744-7
  27. Comment on Sc-Si (Scandium-Silicon) H. Okamoto Journal of Phase Equilibria Volume 16, Number 5, 477, doi:10.1007/BF02645365
  28. Sc-Si (Scandium-Silicon) H. Okamoto Journal of Phase Equilibria Volume 13, Number 6, 679-681, doi:10.1007/BF02667229
  29. The Si−V (Silicon-Vanadium) system: Addendum J. F. Smith Journal of Phase Equilibria Volume 6, Number 3, 266-271, doi:10.1007/BF02880413
  30. The Cr−Si (Chromium-Silicon) system A. B. Gokhale and G. J. Abbaschian Journal of Phase Equilibria Volume 8, Number 5, 474-484, doi:10.1007/BF02893156
  31. Acta Crystallogr. (1948). 1, 212-216 The nature of the bonds in the iron silicide, FeSi, and related crystals L. Pauling and A. M. Soldate doi:10.1107/S0365110X48000570
  32. Acta Crystallogr. (1999). B55, 484-493 Crystal structure, compressibility and possible phase transitions in FeSi studied by first-principles pseudopotential calculations L. Vocadlo, G. D. Price and I. G. Wood doi:10.1107/S0108768199001214
  33. Synthesis and Characterization of Cobalt Monosilicide (CoSi) with CsCl Structure Stabilized by a β-SiC Matrix Zeitschrift für anorganische und allgemeine Chemie Volume 631, Issue 6-7, May 2005, Pages: 1285–1288, Dirk Walter and I W. Karyasa doi:10.1002/zaac.200500050
  34. The Co-Si (Cobalt-Silicon) system K Ishida, T Nishizawa and M. E Schlesinger Journal of Phase Equilibria Volume 12, Number 5, 578-586, doi:10.1007/BF02645074
  35. The Ni−Si (Nickel-Silicon) system P. Nash and A. Nash Journal of Phase Equilibria Volume 8, Number 1, 6-14, doi:10.1007/BF02868885
  36. Cu-Si (copper-silicon) H. Okamoto Journal of Phase Equilibria Volume 23, Number 3, 281-282, doi:10.1361/105497102770331857
  37. The Si-Zn (Silicon-Zinc) system R. W. Olesinski and G. J. Abbaschian Journal of Phase Equilibria Volume 6, Number 6, 545-548, doi:10.1007/BF02887156
  38. The Si−Y (Silicon-Yttrium) system A. B. Gokhale and G. J. Abbaschian Journal of Phase Equilibria Volume 7, Number 5, 485-489, doi:10.1007/BF02867814
  39. The Binary Silicides Eu5Si3 and Yb3Si5 – Synthesis, Crystal Structure, and Chemical Bonding Zeitschrift für anorganische und allgemeine Chemie Volume 624, Issue 6, June 1998, Pages: 945–951, Rainer Pöttgen, Rolf-Dieter Hoffmann and Dirk Kußmann doi:10.1002/(SICI)1521-3749(199806)624:6<945::AID-ZAAC945>3.0.CO;2-D
  40. The Real Structure of YbSi1.4 - Commensurately and Incommensurately Modulated Silicon Substructures Zeitschrift für anorganische und allgemeine Chemie Volume 631, Issue 2-3, February 2005, Pages: 546–555, Christof Kubata, Frank Krumeich, Michael Wörle and Reinhard Nesper doi:10.1002/zaac.200400423
  41. The Si-Zr (Silicon-Zirconium) system H. Okamoto Journal of Phase Equilibria Volume 11, Number 5, 513-519, doi:10.1007/BF02898272
  42. Ein Aufbaumodell für „Chimney-Ladder“-Strukturen Juri N. Grin Monatshefte für Chemie / Chemical Monthly Volume 117, Numbers 8-9, 921-932, doi:10.1007/BF00811261
  43. The Ruthenium–Silicon system L. Perringa, b, F. Bussyc, J. C. Gachonb, * and P. Feschottea Journal of Alloys and Compounds Volume 284, Issues 1-2, 4 March 1999, Pages 198-205 doi:10.1016/S0925-8388(98)00911-6
  44. Ru-Si (Ruthenium-Silicon) H. Okamoto Journal of Phase Equilibria Volume 21, Number 5, 498, doi:10.1361/105497100770339806
  45. Acta Crystallogr. (1954). 7, 441-443 doi:10.1107/S0365110X54001314 The crystal structure of rhodium silicide, RhSi S. Geller and E. A. Wood
  46. The rh-si (rhodium-silicon) system M.E Schlesinger Journal of Phase Equilibria Volume 13, Number 1, 54-59, doi:10.1007/BF02645377
  47. The pdsi (palladiumsilicon) system H. C. Baxi and T. B. Massalski Journal of Phase Equilibria Volume 12, Number 3, 349-356, doi:10.1007/BF02649925
  48. The Ag-Si (Silver-Silicon) system R. W. Olesinski, A. B. Gokhale and G. J. Abbaschian Journal of Phase Equilibria Volume 10, Number 6, 635-640, doi:10.1007/BF02877631
  49. The Cd-Si (Cadmium-Silicon) system R. W. Olesinski and G. J. Abbaschian Journal of Phase Equilibria Volume 6, Number 6, 534-536, doi:10.1007/BF02887152
  50. La-Si (Lanthanum-Silicon) H. Okamoto Journal of Phase Equilibria and Diffusion Volume 28, Number 6, 585, doi:10.1007/s11669-007-9204-9
  51. Cerium–silicon system M.V. Bulanova, P.N. Zheltov, K.A. Meleshevich, P.A. Saltykov and G. Effenberg Journal of Alloys and Compounds Volume 345, Issues 1-2, 28 October 2002, Pages 110-115 doi:10.1016/S0925-8388(02)00409-7
  52. The Ce-Si (Cerium-Silicon) system A. Munitz, A. B. Gokhale and G. J. Abbaschian Journal of Phase Equilibria Volume 10, Number 1, 73-78, doi:10.1007/BF02882179
  53. Thermodynamic properties of praseodymium silicides in the temperature range 298.15-2257 K N. P. Gorbachuk, A. S. Bolgar and A. V. Blinder Powder Metallurgy and Metal Ceramics Volume 36, Numbers 9-10, 498-501, doi:10.1007/BF02680501
  54. The Nd-Si (Neodymium-Silicon) system A. B. Gokhale, A. Munitz and G. J. Abbaschian Journal of Phase Equilibria Volume 10, Number 3, 246-251, doi:10.1007/BF02877504
  55. The Si-Sm (Silicon-Samarium) system A. B. Gokhale and G. J. Abbaschian Journal of Phase Equilibria Volume 9, Number 5, 582-585, doi:10.1007/BF02881960
  56. The Si-Sm (Silicon-Samarium) system A. B. Gokhale and G. J. Abbaschian Journal of Phase Equilibria Volume 9, Number 5, 582-585, doi:10.1007/BF02881960
  57. The Gd−Si (Gadolinium-Silicon) system A. B. Gokhale and G. J. Abbaschian Journal of Phase Equilibria Volume 9, Number 5, 574-578, doi:10.1007/BF02881958
  58. Si-Tb (Silicon-Terbium) H. Okamoto Journal of Phase Equilibria Volume 21, Number 5, 500, doi:10.1361/105497100770339824
  59. The Enthalpies of DySi2 and HoSi1.67 at 298.15-2007 K. Phase Transformation Enthalpies Nikolai P. Gorbachuk and Alexander S. Bolgar Powder Metallurgy and Metal Ceramics Volume 41, Numbers 3-4, 173-176, doi:10.1023/A:1019891128273
  60. Ho-Si (holmium-silicon) H. Okamoto Journal of Phase Equilibria Volume 17, Number 4, 370-371, doi:10.1007/BF02665570
  61. Er-Si (erbium-silicon) H. Okamoto Journal of Phase Equilibria Volume 18, Number 4, 403, doi:10.1007/s11669-997-0073-z
  62. Si-Yb (Silicon-Ytterbium) H. Okamoto Journal of Phase Equilibria Volume 24, Number 6, 583, doi:10.1361/105497103772084787
  63. Standard enthalpies of formation of Me5Si3 (Me triple bond; length as m-dash Y, Lu, Zr) and of Hf3Si2 L. Topor, and O.J. Kleppa Journal of the Less Common Metals Volume 167, Issue 1, December 1990, Pages 91-99 doi:10.1016/0022-5088(90)90292-R
  64. The Hf-Si (hafnium-silicon) system A. B. Gokhale and G. J. Abbaschian Journal of Phase Equilibria Volume 10, Number 4, 390-393, doi:10.1007/BF02877595
  65. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds Lassner, Erik, Schubert, Wolf-Dieter 1999
  66. The Re-Si system (rhenium-silicon) A. B. Gokhale and R. Abbaschian Journal of Phase Equilibria Volume 17, Number 5, 451-454, doi:10.1007/BF02667640
  67. Os-Si (Osmium-Silicon) H. Okamoto Journal of Phase Equilibria and Diffusion Volume 28, Number 4, 410, doi:10.1007/s11669-007-9121-y
  68. Phase diagram and electrical behavior of silicon-rich iridium silicide compounds Journal of Alloys and Compounds, Volume 200, Issues 1-2, 8 October 1993, Pages 99-105 C.E. Allevato, Cronin B. Vining doi:10.1016/0925-8388(93)90478-6
  69. Acta Crystallogr. (1967). 22, 417-430 doi:10.1107/S0365110X67000799 The crystal structure of Rh17Ga22, an example of a new kind of electron compound W. Jeitschko and E. Parthé
  70. Pt-Si (Platinum-Silicon) H. Okamoto Journal of Phase Equilibria Volume 16, Number 3, 286-287, doi:10.1007/BF02667320
  71. The Au−Si (Gold-Silicon) system H. Okamoto and T. B. Massalski Journal of Phase Equilibria Volume 4, Number 2, 190-198, doi:10.1007/BF02884878
  72. The Hg-Si system (mercury-silicon) C. Guminski Journal of Phase Equilibria Volume 22, Number 6, 682-683, doi:10.1007/s11669-001-0041-y
  73. as summarized in Constitution of Binary Alloys, Second Supplement, Francis A. Shunk, McGraw-Hill Book Inc., (NY NY 1969) p. 681-82.
  74. http://www.rertr.anl.gov/Web1999/PDF/18suripto.pdf
  75. Structural chemistry of the neptunium–siliconnext term binary system Pascal Boulet, Daniel Bouëxière, Jean Rebizant and Franck Wastin Journal of Alloys and Compounds Volume 349, Issues 1-2, 3 February 2003, Pages 172-179 doi:10.1016/S0925-8388(02)00918-0
  76. The plutonium-silicon system C.C. Land, K.A. Johnson and F.H. Ellinger Journal of Nuclear Materials Volume 15, Issue 1, 1965, Pages 23-32 doi:10.1016/0022-3115(65)90105-4
  77. Americium monosilicide and “disilicide” F. Weigel, F.D. Wittmann and R. Marquart Journal of the Less Common Metals Volume 56, Issue 1, November 1977, Pages 47-53 doi:10.1016/0022-5088(77)90217-X
  78. Preparation and properties of some curium silicides F. Weigel and R. Marquart Journal of the Less Common Metals Volume 90, Issue 2, April 1983, Pages 283-290 doi:10.1016/0022-5088(83)90077-2
  79. The B−Si (Boron-Silicon) system R. W. Olesinski and G. J. Abbaschian Journal of Phase Equilibria Volume 5, Number 5, 478-484, doi:10.1007/BF02872900
  80. The Al-Si (Aluminum-Silicon) system J. L. Murray and A. J. McAlister Journal of Phase Equilibria Volume 5, Number 1, 74-84, doi:10.1007/BF02868729
  81. The Ga−Si (Gallium-Silicon) system R. W. Olesinski, N. Kanani and G. J. Abbaschian Journal of Phase Equilibria Volume 6, Number 4, 362-364, doi:10.1007/BF02880523
  82. The In−Si (Indium-Silicon) system R. W. Olesinski, N. Kanani and G. J. Abbaschian Journal of Phase Equilibria Volume 6, Number 2, 128-130, doi:10.1007/BF02869223
  83. The Si-Zn (Silicon-Thallium) system R. W. Olesinski and G. J. Abbaschian Journal of Phase Equilibria Volume 6, Number 6, 543-544, doi:10.1007/BF02887155
  84. The Ge−Si (Germanium-Silicon) system R. W. Olesinski and G. J. Abbaschian Journal of Phase Equilibria Volume 5, Number 2, 180-183, doi:10.1007/BF02868957
  85. The Si−Sn (Silicon−Tin) system R. W. Olesinski and G. J. Abbaschian Journal of Phase Equilibria Volume 5, Number 3, 273-276, doi:10.1007/BF02868552
  86. The Pb−Si (Lead−Silicon) system R. W. Olesinski and G. J. Abbaschian Journal of Phase Equilibria Volume 5, Number 3, 271-273, doi:10.1007/BF02868551
  87. The N-Si (Nitrogen-Silicon) system O. N. Carlson Journal of Phase Equilibria Volume 11, Number 6, 569-573, doi:10.1007/BF02841719
  88. Reactions of Silicon Atoms with Nitrogen: A Combined Matrix Spectroscopic and Density Functional Theory Study Günther Maier, Hans Peter Reisenauer, and Jörg Glatthaar Organometallics, 2000, 19 (23), pp 4775–4783 doi:10.1021/om000234r
  89. The P−Si (Phosphorus-Silicon) system R. W. Olesinski, N. Kanani and G. J. Abbaschian Journal of Phase Equilibria Volume 6, Number 2, 130-133, doi:10.1007/BF02869224
  90. A new silicon phosphide, Si12P5: Formation conditions, structure, and properties J. R. A. Carlsson, L. D. Madsen, M. P. Johansson, L. Hultman, X.-H. Li,b) and H. T. G. Hentzell , L. R. Wallenberg J. Vac. Sci. Technol. A 15(2), Mar/Apr 1997 doi:10.1116/1.580497
  91. Further study on structural and electronic properties of silicon phosphide compounds with 3:4 stoichiometry M. Huanga and Y.P. Feng Computational Materials Science Volume 30, Issues 3-4, August 2004, Pages 371-375 doi:10.1016/j.commatsci.2004.02.031
  92. The As−Si (Arsenic-Silicon) system R. W. Olesinski and G. J. Abbaschian Journal of Phase Equilibria Volume 6, Number 3, 254-258, doi:10.1007/BF02880410
  93. The Sb-Si (Antimony-Silicon) system R. W. Olesinski and G. J. Abbaschian Journal of Phase Equilibria Volume 6, Number 5, 445-448, doi:10.1007/BF02869508
  94. The Bi−Si (Bismuth-Silicon) system R. W. Olesinski and G. J. Abbaschian Journal of Phase Equilibria Volume 6, Number 4, 359-361, doi:10.1007/BF02880522
  95. The O-Si (Oxygen-Silicon) system H. A. Wrledt Journal of Phase Equilibria Volume 11, Number 1, 43-61, doi:10.1007/BF02841583
  96. Mück, L. A., Lattanzi, V., Thorwirth, S., McCarthy, M. C. and Gauss, J. (2012), Cyclic SiS2: A New Perspective on the Walsh Rules. Angew. Chem. Int. Ed., 51: 3695–3698. doi:10.1002/anie.201108982
  97. Se-Si (Selenium-Silicon) H. Okamoto Journal of Phase Equilibria Volume 21, Number 5, 499, doi:10.1361/105497100770339815
  98. A note on the Si-Te phase diagram T. G. Davey and E. H. Baker Journal of Materials Science Volume 15, Number 6, 1601-1602, doi:10.1007/BF00752149
  99. Inorganic chemistry, Egon Wiberg,Nils Wiberg,Arnold Frederick Holleman 2001
This article is issued from Wikipedia - version of the Sunday, February 14, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.