Cathepsin B
Cathepsin B |
---|
|
Available structures |
PDB |
Ortholog search: PDBe, RCSB |
List of PDB id codes |
1CSB, 1GMY, 1HUC, 1PBH, 2IPP, 2PBH, 3AI8, 3CBJ, 3CBK, 3K9M, 3PBH
|
|
|
Identifiers |
---|
Symbols |
CTSB ; APPS; CPSB |
---|
External IDs |
OMIM: 116810 MGI: 88561 HomoloGene: 37550 ChEMBL: 4072 GeneCards: CTSB Gene |
---|
EC number |
3.4.22.1 |
---|
|
RNA expression pattern |
---|
|
|
|
More reference expression data |
Orthologs |
---|
Species |
Human |
Mouse |
---|
Entrez |
1508 |
13030 |
---|
Ensembl |
ENSG00000164733 |
ENSMUSG00000021939 |
---|
UniProt |
P07858 |
P10605 |
---|
RefSeq (mRNA) |
NM_001908 |
NM_007798 |
---|
RefSeq (protein) |
NP_001899 |
NP_031824 |
---|
Location (UCSC) |
Chr 8: 11.84 – 11.87 Mb |
Chr 14: 63.12 – 63.15 Mb |
---|
PubMed search |
|
|
---|
|
Cathepsin B (CatB) is an enzymatic protein belonging to the peptidase (or protease) families. In humans, it is coded by the CTSB gene.[1][2]
Function
The protein encoded by this gene is a lysosomal cysteine protease composed of a dimer of disulfide-linked heavy and light chains, both produced from a single protein precursor. It is a member of the peptidase C1 family. At least five transcript variants encoding the same protein have been found for this gene.[3]
Clinical significance
A wide array of diseases result in elevated levels of cathepsin B, which causes numerous pathological processes including cell death, inflammation, and production of toxic peptides. Focusing on neurological diseases, cathepsin B gene knockout studies in an epileptic rodent model have shown cathepsin B causes a significant amount of the apoptotic cell death that occurs as a result of inducing epilepsy.[4] Cathepsin B inhibitor treatment of rats in which a seizure was induced resulted in improved neurological scores, learning ability and much reduced neuronal cell death and pro-apoptotic cell death peptides.[5] Similarly, cathepsin B gene knockout and cathepsin B inhibitor treatment studies in traumatic brain injury mouse models have shown cathepsin B to be key to causing the resulting neuromuscular dysfunction, memory loss, neuronal cell death and increased production of pro-necrotic and pro-apoptotic cell death peptides.[6][7] In ischemic non-human primate and rodent models, cathepsin B inhibitor treatment prevented a significant loss of brain neurons, especially in the hippocampus.[8][9][10] In a streptococcus pneumoniae meningitis rodent model, cathepsin B inhibitor treatment greatly improved the clinical course of the infection and reduced brain inflammation and inflammatory Interleukin-1beta (IL1-beta) and tumor necrosis factor-alpha (TNFalpha).[11] In a transgenic Alzheimer's disease (AD) animal model expressing human amyloid precursor protein (APP) containing the wild-type beta-secretase site sequence found in most AD patients or in guinea pigs, which are a natural model of human wild-type APP processing, genetically deleting the cathepsin B gene or chemically inhibiting cathepsin B brain activity resulted in a significant improvement in the memory deficits that develop in such mice and reduces levels of neurotoxic full-length Abeta(1-40/42) and the particularly pernicious pyroglutamate Abeta(3-40/42), which are thought to cause the disease.[12][13][14][15][16][17][18] In a non-transgenic senescence-accelerated mouse strain, which also has APP containing the wild-type beta-secretase site sequence, treatment with bilobalide, which is an extract of Ginko biloba leaves, also lowered brain Abeta by inhibiting cathepsin B.[19] Moreover, siRNA silencing or chemically inhibiting cathepsin B in primary rodent hippocampal cells or bovine chromaffin cells, which have human wild-type beta-secretase activity, reduces secretion of Abeta by the regulated secretory pathway.[20][21]
Mutations in the CTSB gene have been linked to tropical pancreatitis, a form of chronic pancreatitis.[22]
Interactions
Cathepsin B has been shown to interact with:
See also
References
- ↑ Chan SJ, San Segundo B, McCormick MB, Steiner DF (October 1986). "Nucleotide and predicted amino acid sequences of cloned human and mouse preprocathepsin B cDNAs". Proc. Natl. Acad. Sci. U.S.A. 83 (20): 7721–5. doi:10.1073/pnas.83.20.7721. PMC 386793. PMID 3463996.
- ↑ Cao L, Taggart RT, Berquin IM, Moin K, Fong D, Sloane BF (February 1994). "Human gastric adenocarcinoma cathepsin B: isolation and sequencing of full-length cDNAs and polymorphisms of the gene". Gene 139 (2): 163–9. doi:10.1016/0378-1119(94)90750-1. PMID 8112600.
- ↑ "Entrez Gene: CTSB cathepsin B".
- ↑ Houseweart MK, Pennacchio LA, Vilaythong A, Peters C, Noebels JL, Myers RM (2003). "Cathepsin B but not cathepsins L or S contributes to the pathogenesis of Unverricht-Lundborg progressive myoclonus epilepsy (EPM1)". J. Neurobiol. 56 (4): 315–27. doi:10.1002/neu.10253. PMID 12918016.
- ↑ Ni H, Ren SY, Zhang LL, Sun Q, Tian T, Feng X (2013). "Expression profiles of hippocampal regenerative sprouting-related genes and their regulation by E-64d in a developmental rat model of penicillin-induced recurrent epilepticus". Toxicol. Lett. 217 (2): 162–9. doi:10.1016/j.toxlet.2012.12.010. PMID 23266720.
- ↑ Hook GR, Yu J, Sipes N, Pierschbacher MD, Hook V, Kindy MS (2013). "The Cysteine Protease Cathepsin B is a Key Drug Target and Cysteine Protease Inhibitors are Potential Therapeutics for Traumatic Brain Injury". J Neurotrauma 31 (5): 515–29. doi:10.1089/neu.2013.2944. PMC 3934599. PMID 24083575.
- ↑ Luo CL, Chen XP, Yang R, Sun YX, Li QQ, Bao HJ, Cao QQ, Ni H, Qin ZH, Tao LY (2010). "Cathepsin B contributes to traumatic brain injury-induced cell death through a mitochondria-mediated apoptotic pathway". J Neurosci Res 88 (13): 2847–58. doi:10.1002/jnr.22453. PMID 20653046.
- ↑ Yoshida M, Yamashima T, Zhao L, Tsuchiya K, Kohda Y, Tonchev AB, Matsuda M, Kominami E (2002). "Primate neurons show different vulnerability to transient ischemia and response to cathepsin inhibition". Acta Neuropathol (Berl) 104 (3): 267–72. doi:10.1007/s00401-002-0554-4. PMID 12172912.
- ↑ Tsuchiya K, Kohda Y, Yoshida M, Zhao L, Ueno T, Yamashita J, Yoshioka T, Kominami E, Yamashima T (1999). "Postictal blockade of ischemic hippocampal neuronal death in primates using selective cathepsin inhibitors". Exp Neurol 155 (2): 187–94. doi:10.1006/exnr.1998.6988. PMID 10072294.
- ↑ Tsubokawa T, Yamaguchi-Okada M, Calvert JW, Solaroglu I, Shimamura N, Yata K, Zhang JH (2006). "Neurovascular and neuronal protection by E64d after focal cerebral ischemia in rats". J Neurosci Res 84 (4): 832–40. doi:10.1002/jnr.20977. PMID 16802320.
- ↑ Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C, Pfister HW, Fontana A, Hammerschmidt S, Koedel U (2011). "The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release". J Immunol 187 (10): 5440–51. doi:10.4049/jimmunol.1100790. PMID 22003197.
- ↑ Hook VY, Kindy M, Hook G (2008). "Inhibitors of cathepsin B improve memory and reduce Abeta in transgenic Alzheimer's Disease mice expressing the wild-type, but not the Swedish mutant, beta -secretase APP site". J Biol Chem 283 (12): 7745–7753. doi:10.1074/jbc.m708362200. PMID 18184658.
- ↑ Hook V, Kindy M, Hook G (2007). "Cysteine protease inhibitors effectively reduce in vivo levels of brain beta-amyloid related to Alzheimer's disease". Biol Chem 388 (2): 247–52. doi:10.1515/bc.2007.027. PMID 17261088.
- ↑ Hook G, Hook VY, Kindy M (2007). "Cysteine protease inhibitors reduce brain beta-amyloid and beta-secretase activity in vivo and are potential Alzheimer's disease therapeutics". Biol Chem 388 (9): 979–83. doi:10.1515/BC.2007.117. PMID 17696783.
- ↑ Hook VY, Kindy M, Reinheckel T, Peters C, Hook G (2009). "Genetic cathepsin B deficiency reduces beta-amyloid in transgenic mice expressing human wild-type amyloid precursor protein". Biochem Biophys Res Commun 386 (2): 284–8. doi:10.1016/j.bbrc.2009.05.131. PMID 19501042.
- ↑ Hook G, Hook V, Kindy M (2011). "The Cysteine Protease Inhibitor, E64d, Reduces Brain Amyloid-beta and Improves Memory Deficits in Alzheimer's Disease Animal Models by Inhibiting Cathepsin B, but not BACE1, beta-Secretase Activity". J Alzheimers Dis 26 (2): 387–408. doi:10.3233/JAD-2011-110101. PMID 21613740.
- ↑ Kindy MS, Yu J, Zhu H, El-Amouri SS, Hook V, Hook GR (2012). "Deletion of the Cathepsin B Gene Improves Memory Deficits in a Transgenic Alzheimer's Disease Mouse Model Expressing AbetaPP Containing the Wild-Type beta-Secretase Site Sequence". J Alzheimers Dis 29 (4): 827–40. doi:10.3233/JAD-2012-111604. PMID 22337825.
- ↑ Hook G, Yu J, Toneff T, Kindy M, Hook V (2014). "Brain pyroglutamate amyloid-beta is produced by cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer's disease therapeutic". J Alzheimers Dis 41 (1): 129–49. doi:10.3233/JAD-131370. PMID 24595198.
- ↑ Shi C, Zheng DD, Wu FM, Liu J, Xu J (2012). "The phosphatidyl inositol 3 kinase-glycogen synthase kinase 3beta pathway mediates bilobalide-induced reduction in amyloid beta-peptide". Neurochem Res 37 (2): 298–306. doi:10.1007/s11064-011-0612-1. PMID 21952928.
- ↑ Hook V, Toneff T, Bogyo M, Greenbaum D, Medzihradszky KF, Neveu J, Lane W, Hook G, Reisine T (2005). "Inhibition of cathepsin B reduces β-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate β-secretase of Alzheimer's disease". Biological Chemistry 386 (9): 931–940. doi:10.1515/BC.2005.108. PMID 16164418.
- ↑ Klein DM, Felsenstein KM, Brenneman DE (2009). "Cathepsins B and L differentially regulate amyloid precursor protein processing". J Pharmacol Exp Ther 329 (3): 813–21. doi:10.1124/jpet.108.147082. PMID 19064719.
- ↑ Tandon RK (January 2007). "Tropical pancreatitis". J. Gastroenterol. 42 (Suppl 17): 141–7. doi:10.1007/s00535-006-1930-y. PMID 17238044.
- 1 2 Pavlova A, Björk I (September 2003). "Grafting of features of cystatins C or B into the N-terminal region or second binding loop of cystatin A (stefin A) substantially enhances inhibition of cysteine proteinases". Biochemistry 42 (38): 11326–33. doi:10.1021/bi030119v. PMID 14503883.
- ↑ Estrada S, Nycander M, Hill NJ, Craven CJ, Waltho JP, Björk I (May 1998). "The role of Gly-4 of human cystatin A (stefin A) in the binding of target proteinases. Characterization by kinetic and equilibrium methods of the interactions of cystatin A Gly-4 mutants with papain, cathepsin B, and cathepsin L". Biochemistry 37 (20): 7551–60. doi:10.1021/bi980026r. PMID 9585570.
- ↑ Pol E, Björk I (September 2001). "Role of the single cysteine residue, Cys 3, of human and bovine cystatin B (stefin B) in the inhibition of cysteine proteinases". Protein Sci. 10 (9): 1729–38. doi:10.1110/ps.11901. PMC 2253190. PMID 11514663.
- ↑ Mai J, Finley RL, Waisman DM, Sloane BF (April 2000). "Human procathepsin B interacts with the annexin II tetramer on the surface of tumor cells". J. Biol. Chem. 275 (17): 12806–12. doi:10.1074/jbc.275.17.12806. PMID 10777578.
Further reading
External links
PDB gallery |
---|
| | 1csb: CRYSTAL STRUCTURE OF CATHEPSIN B INHIBITED WITH CA030 AT 2.1 ANGSTROMS RESOLUTION: A BASIS FOR THE DESIGN OF SPECIFIC EPOXYSUCCINYL INHIBITORS |
| 1gmy: CATHEPSIN B COMPLEXED WITH DIPEPTIDYL NITRILE INHIBITOR |
| 1huc: THE REFINED 2.15 ANGSTROMS X-RAY CRYSTAL STRUCTURE OF HUMAN LIVER CATHEPSIN B: THE STRUCTURAL BASIS FOR ITS SPECIFICITY |
| 1pbh: CRYSTAL STRUCTURE OF HUMAN RECOMBINANT PROCATHEPSIN B AT 3.2 ANGSTROM RESOLUTION |
| 1sp4: Crystal structure of NS-134 in complex with bovine cathepsin B: a two headed epoxysuccinyl inhibitor extends along the whole active site cleft |
| 2ipp: Crystal Structure of the tetragonal form of human liver cathepsin B |
| 2pbh: CRYSTAL STRUCTURE OF HUMAN PROCATHEPSIN B AT 3.3 ANGSTROM RESOLUTION |
| 3pbh: REFINED CRYSTAL STRUCTURE OF HUMAN PROCATHEPSIN B AT 2.5 ANGSTROM RESOLUTION |
|
|
|
|
---|
| Activity | |
---|
| Regulation | |
---|
| Classification | |
---|
| Types | |
---|
|