Isotopes of caesium
Caesium (Cs) or cesium as it is spelled in the United States has 40 known isotopes, making it, along with barium and mercury, the element with the most isotopes.[1] The atomic masses of these isotopes range from 112 to 151. Only one isotope, 133Cs, is stable. The longest-lived radioisotopes are 135Cs with a half-life of 2.3 million years, 137Cs with a half-life of 30.1671 years and 134Cs with a half-life of 2.0652 years. All other isotopes have half-lives less than 2 weeks, most under an hour.
Beginning in 1945 with the commencement of nuclear testing, caesium isotopes were released into the atmosphere where it is absorbed readily into solution and is returned to the surface of the earth as a component of radioactive fallout. Once caesium enters the ground water, it is deposited on soil surfaces and removed from the landscape primarily by particle transport. As a result, the input function of these isotopes can be estimated as a function of time.
Relative atomic mass: 132.9054519(2).
Caesium-133
Caesium-133 is the only stable isotope of caesium. One specific quantum transition in the caesium-133 atom is used to define the second, a unit of time.
Caesium-134
Caesium-134 has a half-life of 2.0652 years. It is produced both directly (at a very small yield because 134Xe is stable) as a fission product and via neutron capture from nonradioactive Cs-133 (neutron capture cross section 29 barns), which is a common fission product. Caesium 134 is not produced via beta decay of other fission product nuclides of mass 134 since beta decay stops at stable 134Xe. It is also not produced by nuclear weapons because 133Cs is created by beta decay of original fission products only long after the nuclear explosion is over.
The combined yield of 133Cs and 134Cs is given as 6.7896%. The proportion between the two will change with continued neutron irradiation. 134Cs also captures neutrons with a cross section of 140 barns, becoming long-lived radioactive 135Cs.
Caesium-134 undergoes beta decay (β−), producing Ba 134 directly and emitting on average 2.23 gamma ray photons (mean energy 0.698 MeV).[2]
Caesium-135
Prop: Unit: |
t½ (Ma) |
Yield (%) |
Q * (keV) |
βγ * |
---|---|---|---|---|
99Tc | 0.211 | 6.1385 | 294 | β |
126Sn | 0.230 | 0.1084 | 4050 | βγ |
79Se | 0.327 | 0.0447 | 151 | β |
93Zr | 1.53 | 5.4575 | 91 | βγ |
135Cs | 2.3 | 6.9110 | 269 | β |
107Pd | 6.5 | 1.2499 | 33 | β |
129I | 15.7 | 0.8410 | 194 | βγ |
Hover underlined: more info |
Caesium-135 is a mildly radioactive isotope of caesium, undergoing low-energy beta decay to barium-135 with a half-life of 2.3 million years. It is one of the 7 long-lived fission products and the only alkaline one. In nuclear reprocessing, it stays with Cs-137 and other medium-lived fission products rather than with other long-lived fission products. The low decay energy, lack of gamma radiation, and long half-life of 135Cs make this isotope much less hazardous than 137Cs or 134Cs.
Its precursor 135Xe has a high fission product yield (e.g. 6.3333% for 235U and thermal neutrons) but also has the highest known thermal neutron capture cross section of any nuclide. Because of this, much of the 135Xe produced in current thermal reactors (as much as >90% at steady-state full power)[3] will be converted to stable 136Xe before it can decay to 135Cs. Little or no 135Xe will be destroyed by neutron capture after a reactor shutdown, or in a molten salt reactor that continuously removes xenon from its fuel, a fast neutron reactor, or a nuclear weapon.
A nuclear reactor will also produce much smaller amounts of 135Cs from the nonradioactive fission product Cs-133 by successive neutron capture to 134Cs and then 135Cs.
The thermal neutron capture cross section and resonance integral of 135Cs are 8.3 ± 0.3 and 38.1 ± 2.6 barns respectively.[4] Disposal of Cs-135 by nuclear transmutation is difficult, because of the low cross section as well as because neutron irradiation of mixed-isotope fission caesium produces more Cs-135 from stable Cs-133. In addition, the intense medium-term radioactivity of Cs-137 makes handling of nuclear waste difficult.[5]
Caesium-136
Caesium-136 has a half-life of 13.16 days. It is produced both directly (at a very small yield because 136Xe is stable) as a fission product and via neutron capture from long-lived Cs-135 (neutron capture cross section 8.702 barns), which is a common fission product. Caesium-136 is not produced via beta decay of other fission product nuclides of mass 136 since beta decay stops at stable 136Xe. It is also not produced by nuclear weapons because 135Cs is created by beta decay of original fission products only long after the nuclear explosion is over. 136Cs also captures neutrons with a cross section of 13.00 barns, becoming medium-lived radioactive 137Cs. Caesium-136 undergoes beta decay (β−), producing Ba-136 directly.
Caesium-137
137Cs with a half-life of 30.17 years is one of the two principal medium-lived fission products, along with 90Sr, which are responsible for most of the radioactivity of spent nuclear fuel after several years of cooling, up to several hundred years after use. It constitutes most of the radioactivity still left from the Chernobyl accident and is a major health concern for decontaminating land near the Fukushima nuclear power plant.[6] 137Cs beta decays to barium-137m (a short-lived nuclear isomer) then to nonradioactive barium-137, and is also a strong emitter of gamma radiation. 137Cs has a very low rate of neutron capture and cannot be feasibly disposed of in this way, but must be allowed to decay. 137Cs has been used as a tracer in hydrologic studies, analogous to the use of 3H.
Other isotopes of caesium
The other isotopes have half-lives from a few days to fractions of a second. Almost all caesium produced from nuclear fission comes from beta decay of originally more neutron-rich fission products, passing through isotopes of iodine then isotopes of xenon. Because these elements are volatile and can diffuse through nuclear fuel or air, caesium is often created far from the original site of fission.
Table
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s)[7][n 1] |
daughter isotope(s)[n 2] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|
excitation energy | |||||||||
112Cs | 55 | 57 | 111.95030(33)# | 500(100) µs | p | 111Xe | 1+# | ||
α | 108I | ||||||||
113Cs | 55 | 58 | 112.94449(11) | 16.7(7) µs | p (99.97%) | 112Xe | 5/2+# | ||
β+ (.03%) | 113Xe | ||||||||
114Cs | 55 | 59 | 113.94145(33)# | 0.57(2) s | β+ (91.09%) | 114Xe | (1+) | ||
β+, p (8.69%) | 113I | ||||||||
β+, α (.19%) | 110Te | ||||||||
α (.018%) | 110I | ||||||||
115Cs | 55 | 60 | 114.93591(32)# | 1.4(8) s | β+ (99.93%) | 115Xe | 9/2+# | ||
β+, p (.07%) | 114I | ||||||||
116Cs | 55 | 61 | 115.93337(11)# | 0.70(4) s | β+ (99.67%) | 116Xe | (1+) | ||
β+, p (.279%) | 115I | ||||||||
β+, α (.049%) | 112Te | ||||||||
116mCs | 100(60)# keV | 3.85(13) s | β+ (99.48%) | 116Xe | 4+,5,6 | ||||
β+, p (.51%) | 115I | ||||||||
β+, α (.008%) | 112Te | ||||||||
117Cs | 55 | 62 | 116.92867(7) | 8.4(6) s | β+ | 117Xe | (9/2+)# | ||
117mCs | 150(80)# keV | 6.5(4) s | β+ | 117Xe | 3/2+# | ||||
118Cs | 55 | 63 | 117.926559(14) | 14(2) s | β+ (99.95%) | 118Xe | 2 | ||
β+, p (.042%) | 117I | ||||||||
β+, α (.0024%) | 114Te | ||||||||
118mCs | 100(60)# keV | 17(3) s | β+ (99.95%) | 118Xe | (7−) | ||||
β+, p (.042%) | 117I | ||||||||
β+, α (.0024%) | 114Te | ||||||||
119Cs | 55 | 64 | 118.922377(15) | 43.0(2) s | β+ | 119Xe | 9/2+ | ||
β+, α (2×10−6%) | 115Te | ||||||||
119mCs | 50(30)# keV | 30.4(1) s | β+ | 119Xe | 3/2(+) | ||||
120Cs | 55 | 65 | 119.920677(11) | 61.2(18) s | β+ | 120Xe | 2(−#) | ||
β+, α (2×10−5%) | 116Te | ||||||||
β+, p (7×10−6%) | 118I | ||||||||
120mCs | 100(60)# keV | 57(6) s | β+ | 120Xe | (7−) | ||||
β+, α (2×10−5%) | 116Te | ||||||||
β+, p (7×10−6%) | 118I | ||||||||
121Cs | 55 | 66 | 120.917229(15) | 155(4) s | β+ | 121Xe | 3/2(+) | ||
121mCs | 68.5(3) keV | 122(3) s | β+ (83%) | 121Xe | 9/2(+) | ||||
IT (17%) | 121Cs | ||||||||
122Cs | 55 | 67 | 121.91611(3) | 21.18(19) s | β+ | 122Xe | 1+ | ||
β+, α (2×10−7%) | 118Te | ||||||||
122m1Cs | 45.8 keV | >1 µs | (3)+ | ||||||
122m2Cs | 140(30) keV | 3.70(11) min | β+ | 122Xe | 8− | ||||
122m3Cs | 127.0(5) keV | 360(20) ms | (5)− | ||||||
123Cs | 55 | 68 | 122.912996(13) | 5.88(3) min | β+ | 123Xe | 1/2+ | ||
123m1Cs | 156.27(5) keV | 1.64(12) s | IT | 123Cs | (11/2)− | ||||
123m2Cs | 231.63+X keV | 114(5) ns | (9/2+) | ||||||
124Cs | 55 | 69 | 123.912258(9) | 30.9(4) s | β+ | 124Xe | 1+ | ||
124mCs | 462.55(17) keV | 6.3(2) s | IT | 124Cs | (7)+ | ||||
125Cs | 55 | 70 | 124.909728(8) | 46.7(1) min | β+ | 125Xe | 1/2(+) | ||
125mCs | 266.6(11) keV | 900(30) ms | (11/2−) | ||||||
126Cs | 55 | 71 | 125.909452(13) | 1.64(2) min | β+ | 126Xe | 1+ | ||
126m1Cs | 273.0(7) keV | >1 µs | |||||||
126m2Cs | 596.1(11) keV | 171(14) µs | |||||||
127Cs | 55 | 72 | 126.907418(6) | 6.25(10) h | β+ | 127Xe | 1/2+ | ||
127mCs | 452.23(21) keV | 55(3) µs | (11/2)− | ||||||
128Cs | 55 | 73 | 127.907749(6) | 3.640(14) min | β+ | 128Xe | 1+ | ||
129Cs | 55 | 74 | 128.906064(5) | 32.06(6) h | β+ | 129Xe | 1/2+ | ||
130Cs | 55 | 75 | 129.906709(9) | 29.21(4) min | β+ (98.4%) | 130Xe | 1+ | ||
β− (1.6%) | 130Ba | ||||||||
130mCs | 163.25(11) keV | 3.46(6) min | IT (99.83%) | 130Cs | 5− | ||||
β+ (.16%) | 130Xe | ||||||||
131Cs | 55 | 76 | 130.905464(5) | 9.689(16) d | EC | 131Xe | 5/2+ | ||
132Cs | 55 | 77 | 131.9064343(20) | 6.480(6) d | β+ (98.13%) | 132Xe | 2+ | ||
β− (1.87%) | 132Ba | ||||||||
133Cs[n 3][n 4] | 55 | 78 | 132.905451933(24) | Stable[n 5] | 7/2+ | 1.0000 | |||
134Cs[n 4] | 55 | 79 | 133.906718475(28) | 2.0652(4) y | β− | 134Ba | 4+ | ||
EC (3×10−4%) | 134Xe | ||||||||
134mCs | 138.7441(26) keV | 2.912(2) h | IT | 134Cs | 8− | ||||
135Cs[n 4] | 55 | 80 | 134.9059770(11) | 2.3 x106 y | β− | 135Ba | 7/2+ | ||
135mCs | 1632.9(15) keV | 53(2) min | IT | 135Cs | 19/2− | ||||
136Cs | 55 | 81 | 135.9073116(20) | 13.16(3) d | β− | 136Ba | 5+ | ||
136mCs | 518(5) keV | 19(2) s | β− | 136Ba | 8− | ||||
IT | 136Cs | ||||||||
137Cs[n 4] | 55 | 82 | 136.9070895(5) | 30.1671(13) y | β− (95%) | 137mBa | 7/2+ | ||
β− (5%) | 137Ba | ||||||||
138Cs | 55 | 83 | 137.911017(10) | 33.41(18) min | β− | 138Ba | 3− | ||
138mCs | 79.9(3) keV | 2.91(8) min | IT (81%) | 138Cs | 6− | ||||
β− (19%) | 138Ba | ||||||||
139Cs | 55 | 84 | 138.913364(3) | 9.27(5) min | β− | 139Ba | 7/2+ | ||
140Cs | 55 | 85 | 139.917282(9) | 63.7(3) s | β− | 140Ba | 1− | ||
141Cs | 55 | 86 | 140.920046(11) | 24.84(16) s | β− (99.96%) | 141Ba | 7/2+ | ||
β−, n (.0349%) | 140Ba | ||||||||
142Cs | 55 | 87 | 141.924299(11) | 1.689(11) s | β− (99.9%) | 142Ba | 0− | ||
β−, n (.091%) | 141Ba | ||||||||
143Cs | 55 | 88 | 142.927352(25) | 1.791(7) s | β− (98.38%) | 143Ba | 3/2+ | ||
β−, n (1.62%) | 142Ba | ||||||||
144Cs | 55 | 89 | 143.932077(28) | 994(4) ms | β− (96.8%) | 144Ba | 1(−#) | ||
β−, n (3.2%) | 143Ba | ||||||||
144mCs | 300(200)# keV | <1 s | β− | 144Ba | (>3) | ||||
IT | 144Cs | ||||||||
145Cs | 55 | 90 | 144.935526(12) | 582(6) ms | β− (85.7%) | 145Ba | 3/2+ | ||
β−, n (14.3%) | 144Ba | ||||||||
146Cs | 55 | 91 | 145.94029(8) | 0.321(2) s | β− (85.8%) | 146Ba | 1− | ||
β−, n (14.2%) | 145Ba | ||||||||
147Cs | 55 | 92 | 146.94416(6) | 0.235(3) s | β− (71.5%) | 147Ba | (3/2+) | ||
β−, n (28.49%) | 147Ba | ||||||||
148Cs | 55 | 93 | 147.94922(62) | 146(6) ms | β− (74.9%) | 148Ba | |||
β−, n (25.1%) | 147Ba | ||||||||
149Cs | 55 | 94 | 148.95293(21)# | 150# ms [>50 ms] | β− | 149Ba | 3/2+# | ||
β−, n | 148Ba | ||||||||
150Cs | 55 | 95 | 149.95817(32)# | 100# ms [>50 ms] | β− | 150Ba | |||
β−, n | 149Ba | ||||||||
151Cs | 55 | 96 | 150.96219(54)# | 60# ms [>50 ms] | β− | 151Ba | 3/2+# | ||
β−, n | 150Ba |
- ↑ Abbreviations:
EC: Electron capture
IT: Isomeric transition - ↑ Bold for stable isotopes, bold italics for near-stable isotopes (half-life longer than the age of the universe)
- ↑ Used to define the second
- 1 2 3 4 Fission product
- ↑ Believed to be capable of spontaneous fission
Notes
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
References
- ↑ "Isotopes". Ptable.
- ↑ "Characteristics of Caesium-134 and Caesium-137". Japan Atomic Energy Agency.
- ↑ John L. Groh (2004). "Supplement to Chapter 11 of Reactor Physics Fundamentals" (PDF). CANTEACH project. Retrieved 14 May 2011.
- ↑ Hatsukawa, Y.; Shinohara, N; Hata, K.; et al. (1999). "Thermal neutron cross section and resonance integral of the reaction of135Cs(n,γ)136Cs: Fundamental data for the transmutation of nuclear waste". Journal of Radioanalytical and Nuclear Chemistry 239 (3): 455–458. doi:10.1007/BF02349050.
- ↑ Ohki, Shigeo; Takaki, Naoyuki (2002). "Transmutation of Cesium-135 With Fast Reactors" (PDF). Proceedings of The Seventh Information Exchange Meeting on Actinide and Fission Product Partitioning & Transmutation, Cheju, Korea.
- ↑ Dennis Normile (1 March 2013). "Cooling a Hot Zone". Science 339: 1028–1029. doi:10.1126/science.339.6123.1028.
- ↑ "Universal Nuclide Chart". nucleonica. (registration required (help)).
- Isotope masses from:
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
- Isotopic compositions and standard atomic masses from:
- J. R. de Laeter; J. K. Böhlke; P. De Bièvre; H. Hidaka; H. S. Peiser; K. J. R. Rosman; P. D. P. Taylor (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry 75 (6): 683–800. doi:10.1351/pac200375060683.
- M. E. Wieser (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry 78 (11): 2051–2066. doi:10.1351/pac200678112051. Lay summary.
- Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
- National Nuclear Data Center. "NuDat 2.1 database". Brookhaven National Laboratory. Retrieved September 2005.
- N. E. Holden (2004). "Table of the Isotopes". In D. R. Lide. CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. Section 11. ISBN 978-0-8493-0485-9.
Isotopes of xenon | Isotopes of caesium | Isotopes of barium |
Table of nuclides |
Isotopes of the chemical elements | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 H |
2 He | ||||||||||||||||
3 Li |
4 Be |
5 B |
6 C |
7 N |
8 O |
9 F |
10 Ne | ||||||||||
11 Na |
12 Mg |
13 Al |
14 Si |
15 P |
16 S |
17 Cl |
18 Ar | ||||||||||
19 K |
20 Ca |
21 Sc |
22 Ti |
23 V |
24 Cr |
25 Mn |
26 Fe |
27 Co |
28 Ni |
29 Cu |
30 Zn |
31 Ga |
32 Ge |
33 As |
34 Se |
35 Br |
36 Kr |
37 Rb |
38 Sr |
39 Y |
40 Zr |
41 Nb |
42 Mo |
43 Tc |
44 Ru |
45 Rh |
46 Pd |
47 Ag |
48 Cd |
49 In |
50 Sn |
51 Sb |
52 Te |
53 I |
54 Xe |
55 Cs |
56 Ba |
72 Hf |
73 Ta |
74 W |
75 Re |
76 Os |
77 Ir |
78 Pt |
79 Au |
80 Hg |
81 Tl |
82 Pb |
83 Bi |
84 Po |
85 At |
86 Rn | |
87 Fr |
88 Ra |
104 Rf |
105 Db |
106 Sg |
107 Bh |
108 Hs |
109 Mt |
110 Ds |
111 Rg |
112 Cn |
113 Uut |
114 Fl |
115 Uup |
116 Lv |
117 Uus |
118 Uuo | |
57 La |
58 Ce |
59 Pr |
60 Nd |
61 Pm |
62 Sm |
63 Eu |
64 Gd |
65 Tb |
66 Dy |
67 Ho |
68 Er |
69 Tm |
70 Yb |
71 Lu | |||
89 Ac |
90 Th |
91 Pa |
92 U |
93 Np |
94 Pu |
95 Am |
96 Cm |
97 Bk |
98 Cf |
99 Es |
100 Fm |
101 Md |
102 No |
103 Lr | |||
|