Venus

This article is about the planet. For other uses, see Venus (disambiguation).

Venus The Venusian symbol, a circle with a small equal-armed cross beneath it

Venus in approximately true colour, a nearly uniform pale cream, although the image has been processed to bring out details. The planet's disc is about three-quarters illuminated. Almost no variation or detail can be seen in the clouds.

A real-colour image of Venus taken by Mariner 10 processed from two filters. The surface is obscured by thick sulfuric acid clouds.
Designations
Pronunciation i/ˈvnəs/
Adjectives Venusian or (rarely) Cytherean, Venerean
Orbital characteristics[1][2]
Epoch J2000
Aphelion
  • 0.728213 AU
  • 108,939,000 km
Perihelion
  • 0.718440 AU
  • 107,477,000 km
  • 0.723332 AU
  • 108,208,000 km
Eccentricity 0.006772[3]
  • 224.701 d[1]
  • 0.615198 yr
  • 1.92 Venus solar day
583.92 days[1]
35.02 km/s
50.115°
Inclination
76.680°[3]
54.884°
Satellites None
Physical characteristics
Mean radius
  • 6,051.8±1.0 km[5]
  • 0.9499 Earths
Flattening 0[5]
  • 4.6023×108 km2
  • 0.902 Earths
Volume
  • 9.2843×1011 km3
  • 0.866 Earths
Mass
  • 4.8675×1024 kg[6]
  • 0.815 Earths
Mean density
5.243 g/cm3
  • 8.87 m/s2
  • 0.904 g
10.36 km/s (6.44 mi/s)[7]
−243.025 d (retrograde)[1]
Equatorial rotation velocity
6.52 km/h (1.81 m/s)
2.64° (for retrograde rotation)
177.36° (to orbit)[1][note 1]
North pole right ascension
  • 18h 11m 2s
  • 272.76°[8]
North pole declination
67.16°
Albedo
Surface temp. min mean max
Kelvin 737 K[1]
Celsius 462 °C
9.7″ to 66.0″[1]
Atmosphere
Surface pressure
92 bar (9.2 MPa)
Composition by volume
  1. Defining the rotation as retrograde, as done by NASA space missions and the USGS, puts Ishtar Terra in the northern hemisphere and makes the axial tilt 2.64°. Following the right-hand rule for prograde rotation puts Ishtar Terra in the southern hemisphere and makes the axial tilt 177.36°.

Venus is the second planet from the Sun, which it orbits every 224.7 Earth days.[13] It has the longest rotation period rotation period (225 days) of any planet in the Solar System and rotates in the opposite direction to most other planets. It has no natural satellite. It is named after the Roman goddess of love and beauty. It is the second-brightest natural object in the night sky after the Moon, reaching an apparent magnitude of −4.6, bright enough to cast shadows.[14] Because Venus orbits within Earth's orbit (inferior planet), it never appears to venture far from the Sun; the angle between Venus and the Sun (elongation) subtends a maximum arc of 47.8°.

Venus is a terrestrial planet and is sometimes called Earth's "sister planet" because of their similar size, mass, proximity to the Sun, and bulk composition. It is radically different from Earth in other respects. It has the densest atmosphere of the four terrestrial planets, which consists of more than 96% carbon dioxide. The atmospheric pressure at the planet's surface is 92 times that of Earth. Venus is by far the hottest planet in the Solar System, with a mean surface temperature of 735 K (462 °C; 863 °F), even though Mercury is closer to the Sun. Venus is shrouded by an opaque layer of highly reflective clouds of sulfuric acid, preventing its surface from being seen from space in visible light. It may have had water oceans in the past,[15][16] but these would have vaporised as the temperature rose due to a runaway greenhouse effect.[17] The water has probably photodissociated, and the free hydrogen has been swept into interplanetary space by the solar wind due to a lack of a protective planetary magnetic field.[18] Venus's surface is a dry desertscape interspersed with slab-like rocks and periodically resurfaced by volcanism.

As one of the brightest objects in the sky, Venus has been a major fixture in human culture for as long as records have existed. It has been made sacred to gods of many cultures, and has been a prime inspiration for writers and poets as the "morning star" and "evening star". Venus was the first planet to have its motions plotted across the sky, as early as the second millennium BC,[19] and was a prime target for early interplanetary exploration as the closest planet to Earth. It was the first planet beyond Earth visited by a spacecraft (Mariner 2) in 1962, and the first to be successfully landed on (by Venera 7) in 1970. Venus's thick clouds render observation of its surface impossible in visible light, and the first detailed maps did not emerge until the arrival of the Magellan orbiter in 1991. Plans have been proposed for rovers or more complex missions, but they are hindered by Venus's hostile surface conditions.

Physical characteristics

Venus, without its atmosphere, is placed side by side with Earth. They are nearly the same size, though Venus is slightly smaller.
Size comparison with Earth

Venus is one of the four terrestrial planets in the Solar System, meaning that it is a rocky body like Earth. It is similar to Earth in size and mass, and is often described as Earth's "sister" or "twin".[20] The diameter of Venus is 12,092 km (only 650 km less than Earth's) and its mass is 81.5% of Earth's. Conditions on the Venusian surface differ radically from those on Earth because of its dense carbon dioxide atmosphere. The mass of the atmosphere of Venus is 96.5% carbon dioxide, with most of the remaining 3.5% being nitrogen.[21]

Geography

The Venusian surface was a subject of speculation until some of its secrets were revealed by planetary science in the 20th century. Venera landers in 1975 and 1982 returned images of a surface covered in sediment and relatively angular rocks.[22] The surface was mapped in detail by Magellan in 1990–91. The ground shows evidence of extensive volcanism, and the sulfur in the atmosphere may indicate that there have been some recent eruptions.[23][24]

About 80% of the Venusian surface is covered by smooth, volcanic plains, consisting of 70% plains with wrinkle ridges and 10% smooth or lobate plains.[25] Two highland "continents" make up the rest of its surface area, one lying in the planet's northern hemisphere and the other just south of the equator. The northern continent is called Ishtar Terra, after Ishtar the Babylonian goddess of love, and is about the size of Australia. Maxwell Montes, the highest mountain on Venus, lies on Ishtar Terra. Its peak is 11 km above the Venusian average surface elevation. The southern continent is called Aphrodite Terra, after the Greek goddess of love, and is the larger of the two highland regions at roughly the size of South America. A network of fractures and faults covers much of this area.[26]

The absence of evidence of lava flow accompanying any of the visible caldera remains an enigma. The planet has few impact craters, demonstrating that the surface is relatively young, approximately 300–600 million years old.[27][28] Venus has some unique surface features in addition to the impact craters, mountains, and valleys commonly found on rocky planets. Among these are flat-topped volcanic features called "farra", which look somewhat like pancakes and range in size from 20 to 50 km across, and from 100 to 1,000 m high; radial, star-like fracture systems called "novae"; features with both radial and concentric fractures resembling spider webs, known as "arachnoids"; and "coronae", circular rings of fractures sometimes surrounded by a depression. These features are volcanic in origin.[29]

Most Venusian surface features are named after historical and mythological women.[30] Exceptions are Maxwell Montes, named after James Clerk Maxwell, and highland regions Alpha Regio, Beta Regio, and Ovda Regio. The latter three features were named before the current system was adopted by the International Astronomical Union, the body which oversees planetary nomenclature.[31]

The longitudes of physical features on Venus are expressed relative to its prime meridian. The original prime meridian passed through the radar-bright spot at the centre of the oval feature Eve, located south of Alpha Regio.[32] After the Venera missions were completed, the prime meridian was redefined to pass through the central peak in the crater Ariadne.[33][34]

Surface geology

Image is false-colour, with Maat Mons represented in hues of gold and fiery red, against a black background
False-colour image of Maat Mons with a vertical exaggeration of 22.5

Much of the Venusian surface appears to have been shaped by volcanic activity. Venus has several times as many volcanoes as Earth, and it has 167 large volcanoes that are over 100 km across. The only volcanic complex of this size on Earth is the Big Island of Hawaii.[29]:154 This is not because Venus is more volcanically active than Earth, but because its crust is older. Earth's oceanic crust is continually recycled by subduction at the boundaries of tectonic plates, and has an average age of about 100 million years,[35] whereas the Venusian surface is estimated to be 300–600 million years old.[27][29]

Several lines of evidence point to ongoing volcanic activity on Venus. During the Soviet Venera programme, the Venera 9 orbiter obtained spectroscopic evidence of lightning on Venus,[36] and the Venera 12 descent probe obtained additional evidence of lightning and thunder.[37][38] The European Space Agency's Venus Express in 2007 detected whistler waves further confirming the occurrence of lightning on Venus.[39][40] Although rainfall drives thunderstorms on Earth, there is no rainfall on the surface of Venus (though sulfuric acid rain falls in the upper atmosphere, then evaporates around 25 km above the surface). One possibility is that ash from a volcanic eruption was generating the lightning. Another piece of evidence comes from measurements of sulfur dioxide concentrations in the atmosphere, which dropped by a factor of 10 between 1978 and 1986, jumped in 2006, and again declined 10-fold.[41] This may mean that levels had been boosted several times by large volcanic eruptions.[42][43]

In 2008 and 2009, the first direct evidence for ongoing volcanism was observed by Venus Express, in the form of four transient localised infrared hot spots within the rift zone Ganis Chasma,[44][n 1] near the shield volcano Maat Mons. Three of the spots were observed in more than one successive orbit. These spots are thought to represent lava freshly released by volcanic eruptions.[45][46] The actual temperatures are not known, because the size of the hot spots could not be measured, but are likely have been in the 800–1100 K range, relative to a normal temperature of 740 K.[47]

The plains of Venus are outlined in red and gold, with impact craters leaving golden rings across the surface
Impact craters on the surface of Venus (false-colour image reconstructed from radar data)

Almost a thousand impact craters on Venus are evenly distributed across its surface. On other cratered bodies, such as Earth and the Moon, craters show a range of states of degradation. On the Moon, degradation is caused by subsequent impacts, whereas on Earth it is caused by wind and rain erosion. On Venus, about 85% of the craters are in pristine condition. The number of craters, together with their well-preserved condition, indicates the planet underwent a global resurfacing event about 300–600 million years ago,[27][28] followed by a decay in volcanism.[48] Whereas Earth's crust is in continuous motion, Venus is thought to be unable to sustain such a process. Without plate tectonics to dissipate heat from its mantle, Venus instead undergoes a cyclical process in which mantle temperatures rise until they reach a critical level that weakens the crust. Then, over a period of about 100 million years, subduction occurs on an enormous scale, completely recycling the crust.[29]

Venusian craters range from 3 km to 280 km in diameter. No craters are smaller than 3 km, because of the effects of the dense atmosphere on incoming objects. Objects with less than a certain kinetic energy are slowed down so much by the atmosphere that they do not create an impact crater.[49] Incoming projectiles less than 50 metres in diameter will fragment and burn up in the atmosphere before reaching the ground.[50]

Internal structure

Venus is represented without its atmosphere; the mantle (red) is slightly larger than the core (yellow)
The internal structure of Venus – the crust (outer layer), the mantle (middle layer) and the core (yellow inner layer)

Without seismic data or knowledge of its moment of inertia, little direct information is available about the internal structure and geochemistry of Venus.[51] The similarity in size and density between Venus and Earth suggests they share a similar internal structure: a core, mantle, and crust. Like that of Earth, the Venusian core is at least partially liquid because the two planets have been cooling at about the same rate.[52] The slightly smaller size of Venus means pressures are 24% lower in its deep interior than Earth's.[53] The principal difference between the two planets is the lack of evidence for plate tectonics on Venus, possibly because its crust is too strong to subduct without water to make it less viscous. This results in reduced heat loss from the planet, preventing it from cooling and providing a likely explanation for its lack of an internally generated magnetic field.[54] Instead, Venus may lose its internal heat in periodic major resurfacing events.[27]

Atmosphere and climate

The atmosphere of Venus appears darker and lined with shadows. The shadows trace the prevailing wind direction.
Cloud structure in the Venusian atmosphere in 1979, revealed by observations in the ultraviolet band by Pioneer Venus Orbiter
A false-colour image of Venus: ribbons of lighter colour stretch haphazardly across the surface. Plainer areas of more even colouration lie between.
Global radar view of Venus (without the clouds) from Magellan between 1990 and 1994
Main article: Atmosphere of Venus

Venus has an extremely dense atmosphere composed of 96.5% carbon dioxide, 3.5% nitrogen, and traces of other gases, most notably sulfur dioxide.[55] The mass of its atmosphere is 93 times that of Earth's, whereas the pressure at its surface is about 92 times that at Earth's—a pressure equivalent to that at a depth of nearly 1 kilometre under Earth's oceans. The density at the surface is 65 kg/m3, 6.5% that of water or 50 times as dense as Earth's atmosphere at 20 °C at sea level. The CO
2
-rich atmosphere generates the strongest greenhouse effect in the Solar System, creating surface temperatures of at least 735 K (462 °C).[13][56] This makes Venus's surface hotter than Mercury's, which has a minimum surface temperature of 55 K (−220 °C) and maximum surface temperature of 695 K (420 °C),[57] even though Venus is nearly twice Mercury's distance from the Sun and thus receives only 25% of Mercury's solar irradiance. This temperature is higher than that used for sterilisation. The surface of Venus is often said to resemble traditional accounts of Hell.[58][59]

Studies have suggested that billions of years ago Venus's atmosphere was much more like Earth's than it is now, and that there may have been substantial quantities of liquid water on the surface, but after a period of 600 million to several billion years,[60] a runaway greenhouse effect was caused by the evaporation of that original water, which generated a critical level of greenhouse gases in its atmosphere.[61] Although the surface conditions on Venus are no longer hospitable to any Earthlike life that may have formed before this event, there is speculation on the possibility that life exists in the upper cloud layers of Venus, 50 km (31 mi) up from the surface, where the temperature ranges between 30 and 80 °C but the environment is acidic.[62][63][64]

Thermal inertia and the transfer of heat by winds in the lower atmosphere mean that the temperature of Venus's surface does not vary significantly between the night and day sides, despite Venus's extremely slow rotation. Winds at the surface are slow, moving at a few kilometres per hour, but because of the high density of the atmosphere at the surface, they exert a significant amount of force against obstructions, and transport dust and small stones across the surface. This alone would make it difficult for a human to walk through, even if the heat, pressure, and lack of oxygen were not a problem.[65]

Above the dense CO
2
layer are thick clouds consisting mainly of sulfuric acid droplets. The clouds also contain sulfur aerosol, about 1% ferric chloride[66] and some water.[67][68] Other possible constituents of the cloud particles are ferric sulfate, aluminium chloride and phosphoric anhydride. Clouds at different levels have different compositions and particle size distributions.[66] These clouds reflect and scatter about 90% of the sunlight that falls on them back into space, and prevent visual observation of Venus's surface. The permanent cloud cover means that although Venus is closer than Earth to the Sun, its receives less sunlight on the ground. Strong 85 m/s (300 km/h) winds at the cloud tops go around Venus about every four to five Earth days.[69] Winds on Venus move at up to 60 times the speed of its rotation, whereas Earth's fastest winds are only 10–20% rotation speed.[70]

The surface of Venus is effectively isothermal; it retains a constant temperature not only between day and night but between the equator and the poles.[1][71] Venus's minute axial tilt—less than 3°, compared to 23° on Earth—also minimises seasonal temperature variation.[72] The only appreciable variation in temperature occurs with altitude. The highest point on Venus, Maxwell Montes, is therefore the coolest point on Venus, with a temperature of about 655 K (380 °C) and an atmospheric pressure of about 4.5 MPa (45 bar).[73][74] In 1995, the Magellan spacecraft imaged a highly reflective substance at the tops of the highest mountain peaks that bore a strong resemblance to terrestrial snow. This substance likely formed from a similar process to snow, albeit at a far higher temperature. Too volatile to condense on the surface, it rose in gaseous form to higher elevations, where it is cooler and could precipitate. The identity of this substance is not known with certainty, but speculation has ranged from elemental tellurium to lead sulfide (galena).[75]

The clouds of Venus are capable of producing lightning much like the clouds on Earth.[39] The existence of lightning had been controversial since the first suspected bursts were detected by the Soviet Venera probes. In 2006–2007, Venus Express clearly detected whistler mode waves, the signatures of lightning. Their intermittent appearance indicates a pattern associated with weather activity. The lightning rate is at least half of that on Earth.[39] In 2007, Venus Express discovered that a huge double atmospheric vortex exists at the south pole.[76][77]

Another discovery made by Venus Express in 2011 is that an ozone layer exists high in the atmosphere of Venus.[78]

On 29 January 2013, ESA scientists reported that the ionosphere of Venus streams outwards in a manner similar to "the ion tail seen streaming from a comet under similar conditions."[79][80]

Atmospheric composition
The atmosphere of Earth is represented as a series of coloured spikes. The green of water dominates, while the red of carbon dioxide clusters near the left side.
Synthetic stick absorption spectrum of a simple gas mixture corresponding to Earth's atmosphere
The atmosphere of Venus is represented on the same graph. Here the red of carbon dioxide is almost overwhelming, but the green of water and the purple of carbon monoxide are present.
The composition of the atmosphere of Venus based on HITRAN data[81] created using HITRAN on the Web system.[82]
Green colour – water vapour, red – carbon dioxide, WN – wavenumber (other colours have different meanings, lower wavelengths on the right, higher on the left).

Magnetic field and core

In 1967, Venera 4 found the Venusian magnetic field to be much weaker than that of Earth. This magnetic field is induced by an interaction between the ionosphere and the solar wind,[83][84] rather than by an internal dynamo in the core like the one inside Earth. Venus's small induced magnetosphere provides negligible protection to the atmosphere against cosmic radiation. This radiation may result in cloud-to-cloud lightning discharges.[85]

The lack of an intrinsic magnetic field at Venus was surprising given it is similar to Earth in size, and was expected also to contain a dynamo at its core. A dynamo requires three things: a conducting liquid, rotation, and convection. The core is thought to be electrically conductive and, although its rotation is often thought to be too slow, simulations show it is adequate to produce a dynamo.[86][87] This implies the dynamo is missing because of a lack of convection in the Venusian core. On Earth, convection occurs in the liquid outer layer of the core because the bottom of the liquid layer is much hotter than the top. On Venus, a global resurfacing event may have shut down plate tectonics and led to a reduced heat flux through the crust. This caused the mantle temperature to increase, thereby reducing the heat flux out of the core. As a result, no internal geodynamo is available to drive a magnetic field. Instead, the heat from the core is being used to reheat the crust.[88]

One possibility is that Venus has no solid inner core,[89] or that its core is not cooling, so that the entire liquid part of the core is at approximately the same temperature. Another possibility is that its core has already completely solidified. The state of the core is highly dependent on the concentration of sulfur, which is unknown at present.[88]

The weak magnetosphere around Venus means that the solar wind is interacting directly with its outer atmosphere. Here, ions of hydrogen and oxygen are being created by the dissociation of neutral molecules from ultraviolet radiation. The solar wind then supplies energy that gives some of these ions sufficient velocity to escape Venus's gravity field. This erosion process results in a steady loss of low-mass hydrogen, helium, and oxygen ions, whereas higher-mass molecules, such as carbon dioxide, are more likely to be retained. Atmospheric erosion by the solar wind probably led to the loss of most of Venus's water during the first billion years after it formed.[90] The erosion has increased the ratio of higher-mass deuterium to lower-mass hydrogen in the atmosphere 100 times compared to the rest of the solar system.[91]

Orbit and rotation

Main article: Orbit of Venus
the orbits of Mercury, Venus, Earth and Mars are seen in motion from the top down against a spiderweb graph. Earth's orbit leaves a blue trail, while Venus's orbit leaves a yellow trail
Venus orbits the Sun at an average distance of about 108 million kilometres (about 0.7 AU) and completes an orbit every 224.7 days. Venus is the second planet from the Sun and orbits the Sun approximately 1.6 times (yellow trail) in Earth's 365 days (blue trail)

Venus orbits the Sun at an average distance of about 0.72 AU (108,000,000 km; 67,000,000 mi), and completes an orbit every 224.7 days. Although all planetary orbits are elliptical, Venus's orbit is the closest to circular, with an eccentricity of less than 0.01.[1] When Venus lies between Earth and the Sun in inferior conjunction, it makes the closest approach to Earth of any planet at an average distance of 41 million km.[1] The planet reaches inferior conjunction every 584 days, on average.[1] Because of the decreasing eccentricity of Earth's orbit, the minimum distances will become greater over tens of thousands of years. From the year 1 to 5383, there are 526 approaches less than 40 million km; then there are none for about 60,158 years.[92]

All the planets in the Solar System orbit the Sun in an anti-clockwise direction as viewed from above Earth's north pole. Most planets also rotate on their axes in an anti-clockwise direction, but Venus rotates clockwise in retrograde rotation once every 243 Earth days—the slowest rotation of any planet. Because its rotation is so slow, Venus is very close to spherical.[93] A Venusian sidereal day thus lasts longer than a Venusian year (243 versus 224.7 Earth days). Venus's equator rotates at 6.5 km/h (4.0 mph), whereas Earth's is approximately 1,670 km/h (1,040 mph).[94] Venus's rotation has slowed down by 6.5 min per Venusian sidereal day in the 16 years between the Magellan spacecraft and Venus Express visits.[95] Because of the retrograde rotation, the length of a solar day on Venus is significantly shorter than the sidereal day, at 116.75 Earth days (making the Venusian solar day shorter than Mercury's 176 Earth days).[96] One Venusian year is about 1.92 Venusian solar days.[97] To an observer on the surface of Venus, the Sun would rise in the west and set in the east,[97] although Venus's opaque clouds prevent observing the Sun from the planet's surface.[98]

Venus may have formed from the solar nebula with a different rotation period and obliquity, reaching its current state because of chaotic spin changes caused by planetary perturbations and tidal effects on its dense atmosphere, a change that would have occurred over the course of billions of years. The rotation period of Venus may represent an equilibrium state between tidal locking to the Sun's gravitation, which tends to slow rotation, and an atmospheric tide created by solar heating of the thick Venusian atmosphere.[99][100] The 584-day average interval between successive close approaches to Earth is almost exactly equal to 5 Venusian solar days,[101] but the hypothesis of a spin–orbit resonance with Earth has been discounted.[102]

Venus has no natural satellites.[103] It has several trojan asteroids: the quasi-satellite 2002 VE68[104][105] and two other temporary trojans, 2001 CK32 and 2012 XE133.[106] In the 17th century, Giovanni Cassini reported a moon orbiting Venus, which was named Neith and numerous sightings were reported over the following 200 years, but most were determined to be stars in the vicinity. Alex Alemi's and David Stevenson's 2006 study of models of the early Solar System at the California Institute of Technology shows Venus likely had at least one moon created by a huge impact event billions of years ago.[107] About 10 million years later, according to the study, another impact reversed the planet's spin direction and caused the Venusian moon gradually to spiral inward until it collided with Venus.[108] If later impacts created moons, these were removed in the same way. An alternative explanation for the lack of satellites is the effect of strong solar tides, which can destabilise large satellites orbiting the inner terrestrial planets.[103]

Observation

A photograph of the night sky taken from the seashore. A glimmer of sunlight is on the horizon. There are many stars visible. Venus is at the centre, much brighter than any of the stars, and its light can be seen reflected in the ocean.
Venus is always brighter than all other planets or stars as seen from Earth. The second brightest object on the image is Jupiter.
diagram illustrating the phases of Venus, going from full to new, showing that its diameter increases as its visible area decreases
The phases of Venus and evolution of its apparent diameter

To the naked eye, Venus appears as a white point of light brighter than any other planet or star (apart from the Sun).[109] The greatest luminosity, apparent magnitude −4.9,[11] occurs during crescent phase when it is near Earth. Venus fades to about magnitude −3 when it is backlit by the Sun.[10] The planet is bright enough to be seen in a midday clear sky,[110] and it can be easy to see when the Sun is low on the horizon. As an inferior planet, it always lies within about 47° of the Sun.[12]

Venus "overtakes" Earth every 584 days as it orbits the Sun.[1] As it does so, it changes from the "Evening Star", visible after sunset, to the "Morning Star", visible before sunrise. Although Mercury, the other inferior planet, reaches a maximum elongation of only 28° and is often difficult to discern in twilight, Venus is hard to miss when it is at its brightest. Its greater maximum elongation means it is visible in dark skies long after sunset. As the brightest point-like object in the sky, Venus is a commonly misreported "unidentified flying object". U.S. President Jimmy Carter reported having seen a UFO in 1969, which later analysis suggested was probably Venus.

As it moves around its orbit, Venus displays phases like those of the Moon in a telescopic view. The planet presents a small "full" image when it is on the opposite side of the Sun. It shows a larger "quarter phase" when it is at its maximum elongations from the Sun, and is at its brightest in the night sky, and presents a much larger "thin crescent" in telescopic views as it comes around to the near side between Earth and the Sun. Venus is at its largest and presents its "new phase" when it is between Earth and the Sun. Its atmosphere can be seen in a telescope by the halo of light refracted around it.[12]

Transits

The Venusian orbit is slightly inclined relative to Earth's orbit; thus, when the planet passes between Earth and the Sun, it usually does not cross the face of the Sun. Transits of Venus occur when the planet's inferior conjunction coincides with its presence in the plane of Earth's orbit. Transits of Venus occur in cycles of 243 years with the current pattern of transits being pairs of transits separated by eight years, at intervals of about 105.5 years or 121.5 years—a pattern first discovered in 1639 by the English astronomer Jeremiah Horrocks.[111]

The latest pair was June 8, 2004 and June 5–6, 2012. The transit could be watched live from many online outlets or observed locally with the right equipment and conditions.[112]

The preceding pair of transits occurred in December 1874 and December 1882; the following pair will occur in December 2117 and December 2125.[113] Historically, transits of Venus were important, because they allowed astronomers to determine the size of the astronomical unit, and hence the size of the Solar System as shown by Horrocks in 1639.[114] Captain Cook's exploration of the east coast of Australia came after he had sailed to Tahiti in 1768 to observe a transit of Venus.[115][116]

Pentagram of Venus

the image resembles a complex, spirograph floral pattern with five loops encircling the middle
The pentagram of Venus. Earth is positioned at the centre of the diagram, and the curve represents the direction and distance of Venus as a function of time.

The pentagram of Venus is the path that Venus makes as observed from Earth. Successive inferior conjunctions of Venus repeat very near a 13:8 orbital resonance (Earth orbits 8 times for every 13 orbits of Venus), shifting 144° upon sequential inferior conjunctions. The resonance 13:8 ratio is approximate. 8/13 is approximately 0.615385 while Venus orbits the Sun in 0.615187 years.[117]

Ashen light

A long-standing mystery of Venus observations is the so-called ashen light—an apparent weak illumination of its dark side, seen when the planet is in the crescent phase. The first claimed observation of ashen light was made in 1643, but the existence of the illumination has never been reliably confirmed. Observers have speculated it may result from electrical activity in the Venusian atmosphere, but it could be illusory, resulting from the physiological effect of observing a bright, crescent-shaped object.[118]

Studies

Early studies

a hand-drawn sequence of images showing Venus passing over the edge of the Sun's disk, leaving an illusory drop of shadow behind
The "black drop effect" as recorded during the 1769 transit

Venus was known to ancient civilisations both as the "morning star" and as the "evening star", names that reflect the early assumption that these were two separate objects. The Venus tablet of Ammisaduqa, believed to have been compiled around the mid-seventeenth century BCE,[119] shows the Babylonians understood the two were a single object, referred to in the tablet as the "bright queen of the sky", and could support this view with detailed observations.[120] The Ancient Greeks thought of the two as separate stars, Phosphorus and Hesperus. Pliny the Elder credited the realisation that they were a single object to Pythagoras in the sixth century BCE,[121] while Diogenes Laertius argued that Parmenides was probably responsible.[122] The ancient Chinese referred to the morning Venus as "the Great White" (Tai-bai 太白) or "the Opener of Brightness" (Qi-ming 啟明), and the evening Venus as "the Excellent West One" (Chang-geng 長庚). The Romans designated the morning aspect of Venus as Lucifer, literally "Light-Bringer", and the evening aspect as Vesper, both literal translations of the respective Greek names.

In the second century, in his astronomical treatise Almagest, Ptolemy theorised that both Mercury and Venus are located between the Sun and the Earth. The 11th century Persian astronomer Avicenna claimed to have observed the transit of Venus,[123] which later astronomers took as confirmation of Ptolemy's theory.[124] In the 12th century, the Andalusian astronomer Ibn Bajjah observed "two planets as black spots on the face of the Sun", which were later identified as the transits of Venus and Mercury by the Maragha astronomer Qotb al-Din Shirazi in the 13th century.[125][n 2]

Venus is shown in various positions in its orbit round the Sun, with each position marking a different amount of surface illumination
Galileo's discovery that Venus showed phases (although remaining near the Sun in Earth's sky) proved that it orbits the Sun and not Earth

When the Italian physicist Galileo Galilei first observed the planet in the early 17th century, he found it showed phases like the Moon, varying from crescent to gibbous to full and vice versa. When Venus is furthest from the Sun in the sky, it shows a half-lit phase, and when it is closest to the Sun in the sky, it shows as a crescent or full phase. This could be possible only if Venus orbited the Sun, and this was among the first observations to clearly contradict the Ptolemaic geocentric model that the Solar System was concentric and centred on Earth.[128][129]

The 1639 transit of Venus was accurately predicted by Jeremiah Horrocks and observed by him and his friend, William Crabtree, at each of their respective homes, on 4 December 1639 (24 November under the Julian calendar in use at that time).[130]

The atmosphere of Venus was discovered in 1761 by Russian polymath Mikhail Lomonosov.[131][132] Venus's atmosphere was observed in 1790 by German astronomer Johann Schröter. Schröter found when the planet was a thin crescent, the cusps extended through more than 180°. He correctly surmised this was due to scattering of sunlight in a dense atmosphere. Later, American astronomer Chester Smith Lyman observed a complete ring around the dark side of the planet when it was at inferior conjunction, providing further evidence for an atmosphere.[133] The atmosphere complicated efforts to determine a rotation period for the planet, and observers such as Italian-born astronomer Giovanni Cassini and Schröter incorrectly estimated periods of about 24 h from the motions of markings on the planet's apparent surface.[134]

Ground-based research

black and white image of Venus, its edges blurred by its atmosphere, a small crescent of its surface illuminated
Modern telescopic view of Venus from Earth's surface

Little more was discovered about Venus until the 20th century. Its almost featureless disc gave no hint what its surface might be like, and it was only with the development of spectroscopic, radar and ultraviolet observations that more of its secrets were revealed. The first ultraviolet observations were carried out in the 1920s, when Frank E. Ross found that ultraviolet photographs revealed considerable detail that was absent in visible and infrared radiation. He suggested this was due to a dense, yellow lower atmosphere with high cirrus clouds above it.[135]

Spectroscopic observations in the 1900s gave the first clues about the Venusian rotation. Vesto Slipher tried to measure the Doppler shift of light from Venus, but found he could not detect any rotation. He surmised the planet must have a much longer rotation period than had previously been thought.[136] Later work in the 1950s showed the rotation was retrograde. Radar observations of Venus were first carried out in the 1960s, and provided the first measurements of the rotation period, which were close to the modern value.[137]

Radar observations in the 1970s revealed details of the Venusian surface for the first time. Pulses of radio waves were beamed at the planet using the 300 m (980 ft) radio telescope at Arecibo Observatory, and the echoes revealed two highly reflective regions, designated the Alpha and Beta regions. The observations also revealed a bright region attributed to mountains, which was called Maxwell Montes.[138] These three features are now the only ones on Venus that do not have female names.[31]

Exploration

a skeletal, bottle-shaped craft with a large radio dish on top is seen against a background of stars
Mariner 2, launched in 1962

The first robotic space probe mission to Venus, and the first to any planet, began with the Soviet Venera programme in 1961.[139] The United States' exploration of Venus had its first success with the Mariner 2 mission on 14 December 1962, becoming the world's first successful interplanetary mission, passing 34,833 km (21,644 mi) above the surface of Venus, and gathering data on the planet's atmosphere.[140][141]

black and white image of barren, black, slate-like rocks against a flat sky. The ground and the probe are the focus. Several lines are missing due to transmission failure
180-degree panorama of the Venusian surface from the Soviet Venera 9 lander

On 18 October 1967, the Soviet Venera 4 successfully entered the atmosphere and deployed science experiments. Venera 4 showed the surface temperature was hotter than Mariner 2 had calculated, at almost 500 °C, determined that the atmosphere is 95% carbon dioxide (CO
2
), and discovered that the Venusian atmosphere was considerably denser than Venera 4's designers had anticipated.[142] The joint Venera 4 – Mariner 5 data was analysed by a combined Soviet-American science team in a series of colloquia over the following year,[143] in an early example of space cooperation.[144]

NASA obtained additional data in the 1978 with the Pioneer Venus project that consisted of two separate missions:[145] Pioneer Venus Orbiter and Pioneer Venus Multiprobe.[146] The successful Soviet Venera programme came to a close in October 1983, when Venera 15 and Venera 16 were placed in orbit to conduct mapping of the Venusian terrain.[147]

Several other Venus flybys took place in the 1980s and 1990s that increased the understanding of Venus, including Vega 1 (1985), Vega 2 (1985), Gallileo (1990), Magellan (1994), Cassini–Huygens (1998), and MESSENGER (2006). Then, the Venus Express by the European Space Agency (ESA) entered orbit around Venus in April 2006. Equipped with seven scientific instruments, Venus Express provided unprecedented long-term observation of the Venusian atmosphere. ESA concluded that mission in December 2014.

As of 2016, Japan's Akatsuki is in a highly elliptical Venusian orbit since 7 December 2015, and there are several probing proposals under study by Roscosmos, NASA, and India's ISRO.

In culture

See also Venus (mythology), Venus (astrology) and Historical observations and impact

Throughout history and cultures, the planet has been of remarkable importance as an especial object of observation, reflection and projection. Popular beliefs and observations resulted in different and in parts similar patterns in mythology as well as phenomenological descriptions, attributions and depictions, e.g. in astrology. Such developments in manifestations of human thought reflect the planet's image as a result of early observations of Venus and their impact on culture and science.

Etymology

The adjective Venusian is commonly used for items related to Venus, though the Latin adjective is the rarely used Venerean; the archaic Cytherean is still occasionally encountered. Venus is the only planet in the Solar System that is named after a female figure.[n 3] (Three dwarf planetsCeres, Eris and Haumea—along with many of the first discovered asteroids[148] and some moons (such as the Galilean moons) also have feminine names. Earth and the Moon also have feminine names in many languages—Gaia/Terra, Selene/Luna—but the female mythological figures who personified them were named after them, not the other way around.)[149]

Symbol

Main article: Venus symbol

The astronomical symbol for Venus is the same as that used in biology for the female sex: a circle with a small cross beneath.[150] The Venus symbol also represents femininity, and in Western alchemy stood for the metal copper.[150] Polished copper has been used for mirrors from antiquity, and the symbol for Venus has sometimes been understood to stand for the mirror of the goddess.[150]

In fiction

Main article: Venus in fiction

Venus is a primary feature of the night sky, and so has been present in fiction for as long as fiction has existed. Classical poets such as Homer, Sappho, Ovid and Virgil spoke of the star and its light.[151] Romantic poets such as William Blake, Robert Frost, Alfred Lord Tennyson and William Wordsworth wrote odes to it.[152] With the invention of the telescope, the idea that Venus was a physical world and possible destination began to take form.

The impenetrable Venusian cloud cover gave science fiction writers free rein to speculate on conditions at its surface; all the more so when early observations showed that not only was it similar in size to Earth, it possessed a substantial atmosphere. Closer to the Sun than Earth, the planet was frequently depicted as warmer, but still habitable by humans.[153] The genre reached its peak between the 1930s and 1950s, at a time when science had revealed some aspects of Venus, but not yet the harsh reality of its surface conditions. Findings from the first missions to Venus showed the reality to be quite different, and brought this particular genre to an end.[154] As scientific knowledge of Venus advanced, so science fiction authors tried to keep pace, particularly by conjecturing human attempts to terraform Venus.[155]

Colonisation and terraforming

See also: Life on Venus

Due to its extremely hostile conditions, a surface colony on Venus is not possible with current technology. The atmospheric pressure and temperature approximately fifty kilometres above the surface are similar to those at Earth's surface. In Venus's mostly carbon dioxide atmosphere, Earth's air (nitrogen and oxygen) would act as a lifting gas. This has led to proposals for "floating cities" in the Venusian atmosphere.[156] Aerostats (lighter-than-air balloons) could be used for initial exploration and ultimately for permanent settlements.[156] Among the many engineering challenges are the dangerous amounts of sulfuric acid at these heights.[156]

Venus is shown in black and white, with subtle cloud formations visible
Venus at a wavelength of 630 nm
a half Venus is shown, tinted red and purple
Ultraviolet view of Venus by the Hubble telescope, in false colour
a half-Venus is shown with heavy pixellation
X-ray image of Venus by Chandra (AXAF)
The image resembles Earth, though with far more regular cloud patterns and different continental outlines
Artist's conception of a terraformed Venus

See also

Notes

  1. Misstated as "Ganiki Chasma" in the press release and scientific publication.[45]
  2. Several claims of transit observations made by medieval Islamic astronomers have been shown to be sunspots.[126] Avicenna did not record the date of his observation. There was a transit of Venus within his lifetime, on 24 May 1032, although it is questionable whether it would have been visible from his location.[127]
  3. Goddesses such as Gaia and Terra were named after Earth, and not vice versa.

    References

    1. 1 2 3 4 5 6 7 8 9 10 11 12 Williams, David R. (15 April 2005). "Venus Fact Sheet". NASA. Retrieved 12 October 2007.
    2. Yeomans, Donald K. "HORIZONS Web-Interface for Venus (Major Body=2)". JPL Horizons On-Line Ephemeris System.—Select "Ephemeris Type: Orbital Elements", "Time Span: 2000-01-01 12:00 to 2000-01-02". ("Target Body: Venus" and "Center: Sun" should be defaulted to.) Results are instantaneous osculating values at the precise J2000 epoch.
    3. 1 2 Simon, J.L.; Bretagnon, P.; Chapront, J.; Chapront-Touzé, M.; Francou, G.; Laskar, J. (February 1994). "Numerical expressions for precession formulae and mean elements for the Moon and planets". Astronomy and Astrophysics 282 (2): 663–683. Bibcode:1994A&A...282..663S.
    4. "The MeanPlane (Invariable plane) of the Solar System passing through the barycenter". 3 April 2009. Archived from the original on 17 April 2012. Retrieved 10 April 2009. (produced with Solex 10 (Solex 10 webpage 18 September 2015 archive) written by Aldo Vitagliano; see also Invariable plane)
    5. 1 2 Seidelmann, P. Kenneth; Archinal, Brent A.; A'Hearn, Michael F.; et al. (2007). "Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006". Celestial Mechanics and Dynamical Astronomy 98 (3): 155–180. Bibcode:2007CeMDA..98..155S. doi:10.1007/s10569-007-9072-y.
    6. Konopliv, A. S.; Banerdt, W. B.; Sjogren, W. L. (May 1999). "Venus Gravity: 180th Degree and Order Model". Icarus 139 (1): 3–18. Bibcode:1999Icar..139....3K. doi:10.1006/icar.1999.6086.
    7. "Planets and Pluto: Physical Characteristics". NASA. 5 November 2008. Retrieved 26 August 2015.
    8. "Report on the IAU/IAG Working Group on cartographic coordinates and rotational elements of the planets and satellites". International Astronomical Union. 2000. Retrieved 12 April 2007.
    9. 1 2 Mallama, A.; Wang, D.; Howard, R.A. (2006). "Venus phase function and forward scattering from H
      2
      SO
      4
      ". Icarus 182 (1): 10–22. Bibcode:2006Icar..182...10M. doi:10.1016/j.icarus.2005.12.014.
    10. 1 2 Mallama, A. (2011). "Planetary magnitudes". Sky & Telescope 121 (1): 51–56.
    11. 1 2 "HORIZONS Web-Interface for Venus (Major Body=299)". JPL Horizons On-Line Ephemeris System (Geophysical data). 27 February 2006. Retrieved 28 November 2010. (Using JPL Horizons you can see that on 2013-Dec-08 Venus will have an apmag of −4.89)
    12. 1 2 3 Espenak, Fred (1996). "Venus: Twelve year planetary ephemeris, 1995–2006". NASA Reference Publication 1349. NASA/Goddard Space Flight Center. Retrieved 20 June 2006.
    13. 1 2 "Venus: Facts & Figures". NASA. Retrieved 12 April 2007.
    14. Lawrence, Pete (2005). "In Search of the Venusian Shadow". Digitalsky.org.uk. Archived from the original on 11 June 2012. Retrieved 13 June 2012.
    15. Hashimoto, G. L.; Roos-Serote, M.; Sugita, S.; Gilmore, M. S.; Kamp, L. W.; Carlson, R. W.; Baines, K. H. (2008). "Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data". Journal of Geophysical Research, Planets 113: E00B24. Bibcode:2008JGRE..11300B24H. doi:10.1029/2008JE003134.
    16. David Shiga (10 October 2007). "Did Venus's ancient oceans incubate life?". New Scientist.
    17. Jakosky, Bruce M. (1999). "Atmospheres of the Terrestrial Planets". In Beatty, J. Kelly; Petersen, Carolyn Collins; Chaikin, Andrew. The New Solar System (4th ed.). Boston: Sky Publishing. pp. 175–200. ISBN 978-0-933346-86-4. OCLC 39464951.
    18. "Caught in the wind from the Sun". European Space Agency. 28 November 2007. Retrieved 12 July 2008.
    19. Evans, James (1998). The History and Practice of Ancient Astronomy. Oxford University Press. pp. 296–7. ISBN 978-0-19-509539-5. Retrieved 4 February 2008.
    20. Lopes, Rosaly M. C.; Gregg, Tracy K. P. (2004). Volcanic worlds: exploring the Solar System's volcanoes. Springer Publishing. p. 61. ISBN 978-3-540-00431-8.
    21. "Atmosphere of Venus". The Encyclopedia of Astrobiology, Astronomy, and Spaceflght. Retrieved 29 April 2007.
    22. Mueller, Nils (2014). "Venus Surface and Interior". In Tilman, Spohn; Breuer, Doris; Johnson, T. V. Encyclopedia of the Solar System (3rd ed.). Oxford: Elsevier Science & Technology. ISBN 978-0-12-415845-0. Retrieved 12 January 2016.
    23. Esposito, Larry W. (9 March 1984). "Sulfur Dioxide: Episodic Injection Shows Evidence for Active Venus Volcanism". Science 223 (4640): 1072–1074. Bibcode:1984Sci...223.1072E. doi:10.1126/science.223.4640.1072. PMID 17830154. Retrieved 29 April 2009.
    24. Bullock, Mark A.; Grinspoon, David H. (March 2001). "The Recent Evolution of Climate on Venus". Icarus 150 (1): 19–37. Bibcode:2001Icar..150...19B. doi:10.1006/icar.2000.6570.
    25. Basilevsky, Alexander T.; Head, James W., III (1995). "Global stratigraphy of Venus: Analysis of a random sample of thirty-six test areas". Earth, Moon, and Planets 66 (3): 285–336. Bibcode:1995EM&P...66..285B. doi:10.1007/BF00579467.
    26. Kaufmann, W. J. (1994). Universe. New York: W. H. Freeman. p. 204. ISBN 978-0-7167-2379-0.
    27. 1 2 3 4 Nimmo, F.; McKenzie, D. (1998). "Volcanism and Tectonics on Venus". Annual Review of Earth and Planetary Sciences 26 (1): 23–53. Bibcode:1998AREPS..26...23N. doi:10.1146/annurev.earth.26.1.23.
    28. 1 2 Strom, Robert G.; Schaber, Gerald G.; Dawson, Douglas D. (25 May 1994). "The global resurfacing of Venus". Journal of Geophysical Research 99 (E5): 10899–10926. Bibcode:1994JGR....9910899S. doi:10.1029/94JE00388.
    29. 1 2 3 4 Frankel, Charles (1996). Volcanoes of the Solar System. Cambridge University Press. ISBN 978-0-521-47770-3.
    30. Batson, R.M.; Russell J. F. (18–22 March 1991). "Naming the Newly Found Landforms on Venus" (PDF). Proceedings of the Lunar and Planetary Science Conference XXII. Houston, Texas. p. 65. Retrieved 12 July 2009.
    31. 1 2 Carolynn Young, ed. (1 August 1990). The Magellan Venus Explorer's Guide. California: Jet Propulsion Laboratory. p. 93. Retrieved 13 January 2016.
    32. Davies, M. E.; Abalakin, V. K.; Bursa, M.; Lieske, J. H.; Morando, B.; Morrison, D.; Seidelmann, P. K.; Sinclair, A. T.; Yallop, B.; Tjuflin, Y. S. (1994). "Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites". Celestial Mechanics and Dynamical Astronomy 63 (2): 127–148. Bibcode:1996CeMDA..63..127D. doi:10.1007/BF00693410.
    33. "USGS Astrogeology: Rotation and pole position for the Sun and planets (IAU WGCCRE)". United States Geological Survey. JPL Publication 90-24. Retrieved 22 October 2009.
    34. Carolynn Young, ed. (1 August 1990). The Magellan Venus Explorer's Guide. California: Jet Propulsion Laboratory. pp. 99–100. Retrieved 13 January 2016.
    35. Karttunen, Hannu; Kroger, P.; Oja, H.; Poutanen, M.; Donner, K. J. (2007). Fundamental Astronomy. Springer. p. 162. ISBN 978-3-540-34143-7.
    36. Kranopol'skii, V. A. (1980). "Lightning on Venus according to Information Obtained by the Satellites Venera 9 and 10". Cosmic Research 18 (3): 325–330. Bibcode:1980CosRe..18..325K.
    37. Russell, C. T.; Phillips, J. L. (1990). "The Ashen Light". Advances in Space Research 10 (5): 137–141. Bibcode:1990AdSpR..10..137R. doi:10.1016/0273-1177(90)90174-X.
    38. "Venera 12 Descent Craft". National Space Science Data Center. NASA. Retrieved 10 September 2015.
    39. 1 2 3 Russell, C. T.; Zhang, T. L.; Delva, M.; Magnes, W.; Strangeway, R. J.; Wei, H. Y. (November 2007). "Lightning on Venus inferred from whistler-mode waves in the ionosphere" (PDF). Nature 450 (7170): 661–662. Bibcode:2007Natur.450..661R. doi:10.1038/nature05930. PMID 18046401.
    40. "Venus also zapped by lightning". CNN.com. 29 November 2007. Archived from the original on 30 November 2007. Retrieved 29 November 2007.
    41. Bauer, Markus (3 December 2012). "Have Venusian volcanoes been caught in the act?". European Space Agency. Archived from the original on 3 November 2013. Retrieved 20 June 2015.
    42. Glaze, Lori S. (August 1999). "Transport of SO
      2
      by explosive volcanism on Venus". Journal of Geophysical Research 104 (E8): 18899–18906. Bibcode:1999JGR...10418899G. doi:10.1029/1998JE000619.
    43. Marcq, Emmanuel; Bertaux, Jean-Loup; Montmessin, Franck; Belyaev, Denis (January 2013). "Variations of sulphur dioxide at the cloud top of Venus's dynamic atmosphere". Nature Geoscience 6 (1): 25–28. Bibcode:2013NatGe...6...25M. doi:10.1038/ngeo1650.
    44. "Ganis Chasma". Gazetteer of Planetary Nomenclature. USGS Astrogeology Science Center. Retrieved 19 June 2015.
    45. 1 2 Lakdawalla, Emily (18 June 2015). "Transient hot spots on Venus: Best evidence yet for active volcanism". The Planetary Society. Retrieved 20 June 2015.
    46. "Hot lava flows discovered on Venus". European Space Agency. 18 June 2015. Archived from the original on 19 June 2015. Retrieved 20 June 2015.
    47. Shalygin, E. V.; Markiewicz, W. J.; Basilevsky, A. T.; Titov, D. V.; Ignatiev, N. I.; Head, J. W. (17 June 2015). "Active volcanism on Venus in the Ganiki Chasma rift zone". Geophysical Research Letters 42: 4762–4769. Bibcode:2015GeoRL..42.4762S. doi:10.1002/2015GL064088.
    48. Romeo, I.; Turcotte, D. L. (2009). "The frequency-area distribution of volcanic units on Venus: Implications for planetary resurfacing". Icarus 203 (1): 13–19. Bibcode:2009Icar..203...13R. doi:10.1016/j.icarus.2009.03.036.
    49. Herrick, R. R.; Phillips, R. J. (1993). "Effects of the Venusian atmosphere on incoming meteoroids and the impact crater population". Icarus 112 (1): 253–281. Bibcode:1994Icar..112..253H. doi:10.1006/icar.1994.1180.
    50. Morrison, David; Owens, Tobias C. (2003). The Planetary System (3rd ed.). San Francisco: Benjamin Cummings. ISBN 978-0-8053-8734-6.
    51. Goettel, K. A.; Shields, J. A.; Decker, D. A. (16–20 March 1981). "Density constraints on the composition of Venus". Proceedings of the Lunar and Planetary Science Conference. Houston, TX: Pergamon Press. pp. 1507–1516. Bibcode:1982LPSC...12.1507G. Retrieved 12 July 2009.
    52. Faure, Gunter; Mensing, Teresa M. (2007). Introduction to planetary science: the geological perspective. Springer eBook collection. Springer. p. 201. ISBN 978-1-4020-5233-0.
    53. Aitta, A. (April 2012), "Venus' internal structure, temperature and core composition" (PDF), Icarus 218 (2): 967–974, Bibcode:2012Icar..218..967A, doi:10.1016/j.icarus.2012.01.007, retrieved 17 January 2016.
    54. Nimmo, F. (2002). "Crustal analysis of Venus from Magellan satellite observations at Atalanta Planitia, Beta Regio, and Thetis Regio". Geology 30 (11): 987–990. Bibcode:2002Geo....30..987N. doi:10.1130/0091-7613(2002)030<0987:WDVLAM>2.0.CO;2. ISSN 0091-7613.
    55. Taylor, Fredric W. (2014). "Venus: Atmosphere". In Tilman, Spohn; Breuer, Doris; Johnson, T. V. Encyclopedia of the Solar System. Oxford: Elsevier Science & Technology. ISBN 978-0-12-415845-0. Retrieved 12 January 2016.
    56. "Venus". Case Western Reserve University. 13 September 2006. Archived from the original on 26 April 2012. Retrieved 21 December 2011.
    57. Lewis, John S. (2004). Physics and Chemistry of the Solar System (2nd ed.). Academic Press. p. 463. ISBN 978-0-12-446744-6.
    58. Henry Bortman (2004). "Was Venus Alive? 'The Signs are Probably There'". Space.com. Retrieved 31 July 2010.
    59. Hammonds, Markus (16 May 2013). "Does Alien Life Thrive in Venus's Mysterious Clouds?". Discovery News. Retrieved 11 August 2015.
    60. Grinspoon, David H.; Bullock, M. A. (October 2007). "Searching for Evidence of Past Oceans on Venus". Bulletin of the American Astronomical Society 39: 540. Bibcode:2007DPS....39.6109G.
    61. Kasting, J. F. (1988). "Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus". Icarus 74 (3): 472–494. Bibcode:1988Icar...74..472K. doi:10.1016/0019-1035(88)90116-9. PMID 11538226.
    62. Mullen, Leslie (13 November 2002). "Venusian Cloud Colonies". Astrobiology Magazine. Archived from the original on 16 August 2014.
    63. Landis, Geoffrey A. (July 2003). "Astrobiology: The Case for Venus" (PDF). Journal of the British Interplanetary Society 56 (7–8): 250–254. Bibcode:2003JBIS...56..250L. NASA/TM—2003-212310. Archived from the original (PDF) on 7 August 2011.
    64. Cockell, Charles S. (December 1999). "Life on Venus". Planetary and Space Science 47 (12): 1487–1501. Bibcode:1999P&SS...47.1487C. doi:10.1016/S0032-0633(99)00036-7.
    65. Moshkin, B. E.; Ekonomov, A. P.; Golovin Iu. M. (1979). "Dust on the surface of Venus". Kosmicheskie Issledovaniia (Cosmic Research) 17: 280–285. Bibcode:1979CoRe...17..232M.
    66. 1 2 Krasnopolsky, Vladimir A. (November 2006). "Chemical composition of Venus atmosphere and clouds: Some unsolved problems". Planetary and Space Science 54 (13-14): 1352–1359. Bibcode:2006P&SS...54.1352K. doi:10.1016/j.pss.2006.04.019.
    67. Krasnopolsky, V. A.; Parshev, V. A. (1981). "Chemical composition of the atmosphere of Venus". Nature 292 (5824): 610–613. Bibcode:1981Natur.292..610K. doi:10.1038/292610a0.
    68. Krasnopolsky, Vladimir A. (2006). "Chemical composition of Venus atmosphere and clouds: Some unsolved problems". Planetary and Space Science 54 (13–14): 1352–1359. Bibcode:2006P&SS...54.1352K. doi:10.1016/j.pss.2006.04.019.
    69. W. B. Rossow; A. D. del Genio; T. Eichler (1990). "Cloud-tracked winds from Pioneer Venus OCPP images" (PDF). Journal of the Atmospheric Sciences 47 (17): 2053–2084. Bibcode:1990JAtS...47.2053R. doi:10.1175/1520-0469(1990)047<2053:CTWFVO>2.0.CO;2. ISSN 1520-0469.
    70. Normile, Dennis (7 May 2010). "Mission to probe Venus's curious winds and test solar sail for propulsion". Science 328 (5979): 677. Bibcode:2010Sci...328..677N. doi:10.1126/science.328.5979.677-a. PMID 20448159.
    71. Lorenz, Ralph D.; Lunine, Jonathan I.; Withers, Paul G.; McKay, Christopher P. (2001). "Titan, Mars and Earth: Entropy Production by Latitudinal Heat Transport" (PDF). Ames Research Center, University of Arizona Lunar and Planetary Laboratory. Retrieved 21 August 2007.
    72. "Interplanetary Seasons". NASA. Retrieved 21 August 2007.
    73. Basilevsky A. T.; Head J. W. (2003). "The surface of Venus". Reports on Progress in Physics 66 (10): 1699–1734. Bibcode:2003RPPh...66.1699B. doi:10.1088/0034-4885/66/10/R04.
    74. McGill, G. E.; Stofan, E. R.; Smrekar, S. E. (2010). "Venus tectonics". In T. R. Watters; R. A. Schultz. Planetary Tectonics. Cambridge University Press. pp. 81–120. ISBN 978-0-521-76573-2.
    75. Otten, Carolyn Jones (2004). ""Heavy metal" snow on Venus is lead sulfide". Washington University in St Louis. Retrieved 21 August 2007.
    76. Hand, Eric (November 2007). "European mission reports from Venus". Nature (450): 633–660. doi:10.1038/news.2007.297.
    77. Staff (28 November 2007). "Venus offers Earth climate clues". BBC News. Retrieved 29 November 2007.
    78. "ESA finds that Venus has an ozone layer too". European Space Agency. 6 October 2011. Retrieved 25 December 2011.
    79. "When A Planet Behaves Like A Comet". European Space Agency. 29 January 2013. Retrieved 31 January 2013.
    80. Kramer, Miriam (30 January 2013). "Venus Can Have 'Comet-Like' Atmosphere". Space.com. Retrieved 31 January 2013.
    81. "The HITRAN Database". Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics. Retrieved 8 August 2012. HITRAN is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in the atmosphere.
    82. "HITRAN on the Web Information System". V.E. Zuev Institute of Atmospheric Optics. Retrieved 11 August 2012.
    83. Dolginov, Sh.; Eroshenko, E. G.; Lewis, L. (September 1969). "Nature of the Magnetic Field in the Neighborhood of Venus". Cosmic Research 7: 675. Bibcode:1969CosRe...7..675D.
    84. Kivelson G. M.; Russell, C. T. (1995). "Introduction to Space Physics". Cambridge University Press. ISBN 978-0-521-45714-9.
    85. Upadhyay, H. O.; Singh, R. N. (April 1995). "Cosmic ray Ionization of Lower Venus Atmosphere". Advances in Space Research 15 (4): 99–108. Bibcode:1995AdSpR..15...99U. doi:10.1016/0273-1177(94)00070-H.
    86. Luhmann, J. G.; Russell, C. T. (1997). "Venus: Magnetic Field and Magnetosphere". In Shirley, J. H.; Fainbridge, R. W. Encyclopedia of Planetary Sciences. New York: Chapman and Hall. pp. 905–907. ISBN 978-1-4020-4520-2.
    87. Stevenson, D. J. (15 March 2003). "Planetary magnetic fields". Earth and Planetary Science Letters 208 (1–2): 1–11. Bibcode:2003E&PSL.208....1S. doi:10.1016/S0012-821X(02)01126-3.
    88. 1 2 Nimmo, Francis (November 2002). "Why does Venus lack a magnetic field?" (PDF). Geology 30 (11): 987–990. Bibcode:2002Geo....30..987N. doi:10.1130/0091-7613(2002)030<0987:WDVLAM>2.0.CO;2. ISSN 0091-7613. Retrieved 28 June 2009.
    89. Konopliv, A. S.; Yoder, C. F. (1996). "Venusian k2 tidal Love number from Magellan and PVO tracking data". Geophysical Research Letters 23 (14): 1857–1860. Bibcode:1996GeoRL..23.1857K. doi:10.1029/96GL01589. Archived from the original on 12 May 2011. Retrieved 12 July 2009.
    90. Svedhem, Håkan; Titov, Dmitry V.; Taylor, Fredric W.; Witasse, Olivier (November 2007). "Venus as a more Earth-like planet". Nature 450 (7170): 629–632. Bibcode:2007Natur.450..629S. doi:10.1038/nature06432. PMID 18046393.
    91. Donahue, T. M.; Hoffman, J. H.; Hodges, R. R.; Watson, A. J. (1982). "Venus Was Wet: A Measurement of the Ratio of Deuterium to Hydrogen". Science 216 (4546): 630–633. Bibcode:1982Sci...216..630D. doi:10.1126/science.216.4546.630. ISSN 0036-8075.
    92. "Venus Close Approaches to Earth as predicted by Solex 11". Archived from the original on 9 August 2012. Retrieved 19 March 2009. Numbers generated by Solex
    93. Squyres, Steven W. (2016). "Venus". Encyclopædia Britannica Online. Retrieved 7 January 2016.
    94. Bakich, Michael E. (2000). The Cambridge Planetary Handbook. Cambridge University Press. p. 50. ISBN 978-0-521-63280-5.
    95. "Could Venus Be Shifting Gear?". Venus Express. European Space Agency. 10 February 2012. Retrieved 7 January 2016.
    96. "Planetary Facts". The Planetary Society. Archived from the original on 11 May 2012. Retrieved 20 January 2016.
    97. 1 2 "Space Topics: Compare the Planets". The Planetary Society. Archived from the original on 18 February 2006. Retrieved 12 January 2016.
    98. Serge Brunier (2002). Solar System Voyage. Translated by Dunlop, Storm. Cambridge University Press. p. 40. ISBN 978-0-521-80724-1.
    99. Correia, Alexandre C. M.; Laskar, Jacques; De Surgy, Olivier Néron (May 2003). "Long-Term Evolution of the Spin of Venus, Part I: Theory" (PDF). Icarus 163 (1): 1–23. Bibcode:2003Icar..163....1C. doi:10.1016/S0019-1035(03)00042-3.
    100. Laskar, Jacques; De Surgy, Olivier Néron. "Long-Term Evolution of the Spin of Venus, Part II: Numerical Simulations" (PDF). Icarus 163 (1): 24–45. Bibcode:2003Icar..163...24C. doi:10.1016/S0019-1035(03)00043-5.
    101. Gold, T.; Soter, S. (1969). "Atmospheric Tides and the Resonant Rotation of Venus". Icarus 11 (3): 356–66. Bibcode:1969Icar...11..356G. doi:10.1016/0019-1035(69)90068-2.
    102. Shapiro, I. I.; Campbell, D. B.; De Campli, W. M. (June 1979). "Nonresonance Rotation of Venus". Astrophysical Journal 230: L123–L126. Bibcode:1979ApJ...230L.123S. doi:10.1086/182975.
    103. 1 2 Sheppard, Scott S.; Trujillo, Chadwick A. (July 2009). "A Survey for Satellites of Venus". Icarus 202 (1): 12–16. arXiv:0906.2781. Bibcode:2009Icar..202...12S. doi:10.1016/j.icarus.2009.02.008.
    104. Mikkola, S.; Brasser, R.; Wiegert, P.; Innanen, K. (July 2004). "Asteroid 2002 VE68: A Quasi-Satellite of Venus". Monthly Notices of the Royal Astronomical Society 351 (3): L63. Bibcode:2004MNRAS.351L..63M. doi:10.1111/j.1365-2966.2004.07994.x.
    105. De la Fuente Marcos, Carlos; De la Fuente Marcos, Raúl (November 2012). "On the Dynamical Evolution of 2002 VE68". Monthly Notices of the Royal Astronomical Society 427 (1): 728–39. arXiv:1208.4444. Bibcode:2012MNRAS.427..728D. doi:10.1111/j.1365-2966.2012.21936.x.
    106. De la Fuente Marcos, Carlos; De la Fuente Marcos, Raúl. "Asteroid 2012 XE133: A Transient Companion to Venus". Monthly Notices of the Royal Astronomical Society 432 (2): 886–93. arXiv:1303.3705. Bibcode:2013MNRAS.432..886D. doi:10.1093/mnras/stt454.
    107. Musser, George (10 October 2006). "Double Impact May Explain Why Venus Has No Moon". Scientific American. Retrieved 7 January 2016.
    108. Tytell, David (10 October 2006). "Why Doesn't Venus Have a Moon?". Sky & Telescope. Retrieved 7 January 2016.
    109. Dickinson, Terrence (1998). NightWatch: A Practical Guide to Viewing the Universe. Buffalo, NY: Firefly Books. p. 134. ISBN 978-1-55209-302-3. Retrieved 12 January 2016.
    110. Tony Flanders (25 February 2011). "See Venus in Broad Daylight!". Sky & Telescope. Retrieved 11 January 2016.
    111. Anon. "Transit of Venus". History. University of Central Lancashire. Archived from the original on 30 July 2012. Retrieved 14 May 2012.
    112. Boyle, Alan (5 June 2012). "Venus transit: A last-minute guide". NBC News. Archived from the original on 18 June 2013. Retrieved 11 January 2016.
    113. Espenak, Fred (2004). "Transits of Venus, Six Millennium Catalog: 2000 BCE to 4000 CE". Transits of the Sun. NASA. Retrieved 14 May 2009.
    114. Kollerstrom, Nicholas (1998). "Horrocks and the Dawn of British Astronomy". University College London. Retrieved 11 May 2012.
    115. Hornsby, T. (1771). "The quantity of the Sun's parallax, as deduced from the observations of the transit of Venus on June 3, 1769". Philosophical Transactions of the Royal Society 61 (0): 574–579. doi:10.1098/rstl.1771.0054.
    116. Woolley, Richard (1969). "Captain Cook and the Transit of Venus of 1769". Notes and Records of the Royal Society of London 24 (1): 19–32. doi:10.1098/rsnr.1969.0004. ISSN 0035-9149. JSTOR 530738.
    117. Baez, John (4 January 2014). "The Pentagram of Venus". Azimuth. Retrieved 7 January 2016.
    118. Baum, R. M. (2000). "The enigmatic ashen light of Venus: an overview". Journal of the British Astronomical Association 110: 325. Bibcode:2000JBAA..110..325B.
    119. Hobson, Russell (2009). The Exact Transmission of Texts in the First Millennium B.C.E. (PDF) (Ph.D.). University of Sydney, Department of Hebrew, Biblical and Jewish Studies.
    120. Waerden, Bartel (1974). Science awakening II: the birth of astronomy. Springer. p. 56. ISBN 978-90-01-93103-2. Retrieved 10 January 2011.
    121. Pliny the Elder (1991). Natural History II:36–37. translated by John F. Healy. Harmondsworth, Middlesex, UK: Penguin. pp. 15–16.
    122. Burkert, Walter (1972). Lore and Science in Ancient Pythagoreanism. Harvard University Press. p. 307. ISBN 978-0-674-53918-1.
    123. Goldstein, Bernard R. (March 1972). "Theory and Observation in Medieval Astronomy". Isis (University of Chicago Press) 63 (1): 39–47 [44]. doi:10.1086/350839.
    124. "AVICENNA viii. Mathematics and Physical Sciences". Encyclopedia Iranica.
    125. S. M. Razaullah Ansari (2002). History of Oriental Astronomy: Proceedings of the Joint Discussion-17 at the 23rd General Assembly of the International Astronomical Union, Organised by the Commission 41 (History of Astronomy), Held in Kyoto, August 25–26, 1997. Springer Science+Business Media. p. 137. ISBN 978-1-4020-0657-9.
    126. J.M. Vaquero; M. Vázquez (2009). The Sun Recorded Through History. Springer Science & Business Media. p. 75. ISBN 978-0-387-92790-9.
    127. Fredrick Kennard. Thought Experiments: Popular Thought Experiments in Philosophy, Physics, Ethics, Computer Science & Mathematics. p. 113. ISBN 978-1-329-00342-2.
    128. Palmieri, Paolo (2001). "Galileo and the discovery of the phases of Venus". Journal for the History of Astronomy 21 (2): 109–129. Bibcode:2001JHA....32..109P.
    129. Fegley Jr, B (2003). Heinrich D. Holland; Karl K. Turekian, eds. Venus. Treatise on Geochemistry (Elsevier). pp. 487–507. ISBN 978-0-08-043751-4.
    130. Kollerstrom, Nicholas (2004). "William Crabtree's Venus transit observation" (PDF). Proceedings IAU Colloquium No. 196, 2004. International Astronomical Union. Retrieved 10 May 2012.
    131. Marov, Mikhail Ya. (2004). D.W. Kurtz, ed. Mikhail Lomonosov and the discovery of the atmosphere of Venus during the 1761 transit. Proceedings of IAU Colloquium No. 196 (Preston, U.K.: Cambridge University Press). pp. 209–219. Bibcode:2005tvnv.conf..209M. doi:10.1017/S1743921305001390.
    132. "Mikhail Vasilyevich Lomonosov". Encyclopædia Britannica Online. Retrieved 12 July 2009.
    133. Russell, H. N. (1899). "The Atmosphere of Venus". Astrophysical Journal 9: 284–299. Bibcode:1899ApJ.....9..284R. doi:10.1086/140593.
    134. Hussey, T. (1832). "On the Rotation of Venus". Monthly Notices of the Royal Astronomical Society 2: 78–126. Bibcode:1832MNRAS...2...78H. doi:10.1093/mnras/2.11.78d.
    135. Ross, F. E. (1928). "Photographs of Venus". Astrophysical Journal. 68–92: 57. Bibcode:1928ApJ....68...57R. doi:10.1086/143130.
    136. Slipher, V. M. (1903). "A Spectrographic Investigation of the Rotation Velocity of Venus". Astronomische Nachrichten 163 (3–4): 35–52. Bibcode:1903AN....163...35S. doi:10.1002/asna.19031630303.
    137. Goldstein, R. M.; Carpenter, R. L. (1963). "Rotation of Venus: Period Estimated from Radar Measurements". Science 139 (3558): 910–911. Bibcode:1963Sci...139..910G. doi:10.1126/science.139.3558.910. PMID 17743054.
    138. Campbell, D. B.; Dyce, R. B.; Pettengill G. H. (1976). "New radar image of Venus". Science 193 (4258): 1123–1124. Bibcode:1976Sci...193.1123C. doi:10.1126/science.193.4258.1123. PMID 17792750.
    139. Mitchell, Don (2003). "Inventing The Interplanetary Probe". The Soviet Exploration of Venus. Retrieved 27 December 2007.
    140. Mayer; McCullough & Sloanaker (January 1958). "Observations of Venus at 3.15-cm Wave Length". The Astrophysical Journal 127: 1. Bibcode:1958ApJ...127....1M. doi:10.1086/146433.
    141. Jet Propulsion Laboratory (1962). "Mariner-Venus 1962 Final Project Report" (PDF). SP-59. NASA.
    142. Mitchell, Don (2003). "Plumbing the Atmosphere of Venus". The Soviet Exploration of Venus. Retrieved 27 December 2007.
    143. "Report on the Activities of the COSPAR Working Group VII". Preliminary Report, COSPAR Twelfth Plenary Meeting and Tenth International Space Science Symposium. Prague, Czechoslovakia: National Academy of Sciences. 11–24 May 1969. p. 94.
    144. Sagdeev, Roald; Eisenhower, Susan (28 May 2008). "United States-Soviet Space Cooperation during the Cold War". Retrieved 19 July 2009.
    145. Colin, L.; Hall, C. (1977). "The Pioneer Venus Program". Space Science Reviews 20 (3): 283–306. Bibcode:1977SSRv...20..283C. doi:10.1007/BF02186467.
    146. Williams, David R. (6 January 2005). "Pioneer Venus Project Information". NASA/Goddard Space Flight Center. Retrieved 19 July 2009.
    147. Greeley, Ronald; Batson, Raymond M. (2007). Planetary Mapping. Cambridge University Press. p. 47. ISBN 978-0-521-03373-2. Retrieved 19 July 2009.
    148. Nicholson, Seth B. (1961). "The Trojan Asteroids". Astronomical Society of the Pacific Leaflets 8: 239. Bibcode:1961ASPL....8..239N.
    149. Cessna, Abby. "Mythology of the Planets". Universe Today. Retrieved 19 September 2011.
    150. 1 2 3 Stearn, William (May 1968). "The Origin of the Male and Female Symbols of Biology". Taxon 11 (4): 109–113. doi:10.2307/1217734. JSTOR 1217734.
    151. Aaron J. Atsma. "Eospheros & Hespheros". Theoi.com. Retrieved 15 January 2016.
    152. Dava Sobel (2005). The Planets. Harper Publishing. pp. 53–70. ISBN 978-0-14-200116-5.
    153. Miller, Ron (2003). Venus. Twenty-First Century Books. p. 12. ISBN 978-0-7613-2359-4.
    154. Dick, Steven (2001). Life on Other Worlds: The 20th-Century Extraterrestrial Life Debate. Cambridge University Press. p. 43. ISBN 978-0-521-79912-6.
    155. Seed, David (2005). A Companion to Science Fiction. Blackwell Publishing. pp. 134–135. ISBN 978-1-4051-1218-5.
    156. 1 2 3 Landis, Geoffrey A. (2003). "Colonization of Venus". AIP Conference Proceedings. pp. 1193–1198. doi:10.1063/1.1541418.

    External links

    Wikimedia Commons has media related to Venus.
    Wikiquote has quotations related to: Venus

    Cartographic resources

    This article is issued from Wikipedia - version of the Saturday, May 07, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.