Svante Arrhenius

Svante Arrhenius
Born Svante August Arrhenius
(1859-02-19)19 February 1859
Wik Castle, Sweden
Died 2 October 1927(1927-10-02) (aged 68)
Stockholm, Sweden
Nationality Swedish
Fields
Institutions Royal Institute of Technology
Alma mater
Doctoral advisor
Doctoral students Oskar Benjamin Klein
Known for
Notable awards

Svante August Arrhenius (19 February 1859 – 2 October 1927) was a Swedish scientist, originally a physicist, but often referred to as a chemist, and one of the founders of the science of physical chemistry. He received the Nobel Prize for Chemistry in 1903, becoming the first Swedish Nobel laureate, and in 1905 became director of the Nobel Institute where he remained until his death.[1] The Arrhenius equation, Arrhenius definition of an acid, lunar crater Arrhenius, the mountain of Arrheniusfjellet and the Arrhenius Labs at Stockholm University are named after him. Today, Arrhenius is best known for his study published in 1896, on the greenhouse effect.

Biography

Early years

Arrhenius was born on February 19, 1859, at Vik (also spelled Wik or Wijk), near Uppsala, Sweden, the son of Svante Gustav and Carolina Thunberg Arrhenius. His father had been a land surveyor for Uppsala University, moving up to a supervisory position. At the age of three, Arrhenius taught himself to read without the encouragement of his parents, and by watching his father's addition of numbers in his account books, became an arithmetical prodigy. In later life, Arrhenius enjoyed using masses of data to discover mathematical relationships and laws.

At age eight, he entered the local cathedral school, starting in the fifth grade, distinguishing himself in physics and mathematics, and graduating as the youngest and most able student in 1876.

Ionic Disassociation

At the University of Uppsala, he was unsatisfied with the chief instructor of physics and the only faculty member who could have supervised him in chemistry, Per Teodor Cleve, so he left to study at the Physical Institute of the Swedish Academy of Sciences in Stockholm under the physicist Erik Edlund in 1881.

His work focused on the conductivities of electrolytes. In 1884, based on this work, he submitted a 150-page dissertation on electrolytic conductivity to Uppsala for the doctorate. It did not impress the professors, among whom was Per Teodor Cleve, and he received a fourth class degree, but upon his defense it was reclassified as third class. Later, extensions of this very work would earn him the 1903 Nobel Prize in Chemistry.[2]

Arrhenius put forth 56 theses in his 1884 dissertation, most of which would still be accepted today unchanged or with minor modifications. The most important idea in the dissertation was his explanation of the fact that solid crystalline salts disassociate into paired charged particles when dissolved, for which he would win the 1903 Nobel Prize in Chemistry.[3] [4] [5]

Arrhenius' explanation was that in forming a solution, the salt dissociates into charged particles (to which Michael Faraday had given the name ions many years earlier). Faraday's belief had been that ions were produced in the process of electrolysis; Arrhenius proposed that, even in the absence of an electric current, solutions of salts contained ions. He thus proposed that chemical reactions in solution were reactions between ions.[3][4][5]

The dissertation did not impress the professors at Uppsala, but Arrhenius sent it to a number of scientists in Europe who were developing the new science of physical chemistry, such as Rudolf Clausius, Wilhelm Ostwald, and J. H. van 't Hoff. They were far more impressed, and Ostwald even came to Uppsala to persuade Arrhenius to join his research team. Arrhenius declined, however, as he preferred to stay in Sweden for a while (his father was very ill and would die in 1885) and had received an appointment at Uppsala.[3][4][5]

In an extension of his ionic theory Arrhenius proposed definitions for acids and bases, in 1884. He believed that acids were substances that produce hydrogen ions in solution and that bases were substances that produce hydroxide ions in solution.

Middle period

Arrhenius next received a travel grant from the Swedish Academy of Sciences, which enabled him to study with Ostwald in Riga (now in Latvia), with Friedrich Kohlrausch in Würzburg, Germany, with Ludwig Boltzmann in Graz, Austria, and with van 't Hoff in Amsterdam.

In 1889 Arrhenius explained the fact that most reactions require added heat energy to proceed by formulating the concept of activation energy, an energy barrier that must be overcome before two molecules will react. The Arrhenius equation gives the quantitative basis of the relationship between the activation energy and the rate at which a reaction proceeds.

In 1891 he became a lecturer at the Stockholm University College (Stockholms Högskola, now Stockholm University), being promoted to professor of physics (with much opposition) in 1895, and rector in 1896.

He was married twice, first to his former pupil Sofia Rudbeck (1894 to 1896), with whom he had one son Olof Arrhenius, and then to Maria Johansson (1905 to 1927), with whom he had two daughters and a son.

About 1900, Arrhenius became involved in setting up the Nobel Institutes and the Nobel Prizes. He was elected a member of the Royal Swedish Academy of Sciences in 1901. For the rest of his life, he would be a member of the Nobel Committee on Physics and a de facto member of the Nobel Committee on Chemistry. He used his positions to arrange prizes for his friends (Jacobus van't Hoff, Wilhelm Ostwald, Theodore Richards) and to attempt to deny them to his enemies (Paul Ehrlich, Walther Nernst, Dmitri Mendeleev).[6] In 1901 Arrhenius was elected to the Swedish Academy of Sciences, against strong opposition. In 1903 he became the first Swede to be awarded the Nobel Prize in chemistry. In 1905, upon the founding of the Nobel Institute for Physical Research at Stockholm, he was appointed rector of the institute, the position where he remained until retirement in 1927. He was elected a Foreign Member of the Royal Society (ForMemRS) in 1910.[7] In 1911 he won the first Willard Gibbs Award.[8] " In 1912, he was elected a Foreign Honorary Member of the American Academy of Arts and Sciences[9] In 1919 he became foreign member of the Royal Netherlands Academy of Arts and Sciences.[10]

Later years

Arrhenius' family grave in Uppsala

Eventually, Arrhenius' theories became generally accepted and he turned to other scientific topics. In 1902 he began to investigate physiological problems in terms of chemical theory. He determined that reactions in living organisms and in the test tube followed the same laws.

In 1904 he delivered at the University of California a course of lectures, the object of which was to illustrate the application of the methods of physical chemistry to the study of the theory of toxins and antitoxins, and which were published in 1907 under the title Immunochemistry.[11] He also turned his attention to geology (the origin of ice ages), astronomy, physical cosmology, and astrophysics, accounting for the birth of the solar system by interstellar collision. He considered radiation pressure as accounting for comets, the solar corona, the aurora borealis, and zodiacal light.

He thought life might have been carried from planet to planet by the transport of spores, the theory now known as panspermia.[12] He thought of the idea of a universal language, proposing a modification of the English language.

He was a board member for the Swedish Society for Racial Hygiene (founded 1909), which endorsed mendelism at the time, and contributed to the topic of contraceptives around 1910. However, until 1938 information and sale of contraceptives was prohibited in Sweden. Around 1930, conservative members of the society helped to establish eugenic policies in Sweden.[13][14] Gordon Stein wrote that Svante Arrhenius was an atheist.[15][16] In his last years he wrote both textbooks and popular books, trying to emphasize the need for further work on the topics he discussed. In September, 1927, he came down with an attack of acute intestinal catarrh, died on 2 October, and was buried in Uppsala.

Greenhouse effect

Arrhenius developed a theory to explain the ice ages, and in 1896 he was the first scientist to attempt to calculate how changes in the levels of carbon dioxide in the atmosphere could alter the surface temperature through the greenhouse effect.[17][18] He was influenced by the work of others, including Joseph Fourier, John Tyndall or Claude Pouillet. Arrhenius used the infrared observations of the moon by Frank Washington Very and Samuel Pierpont Langley at the Allegheny Observatory in Pittsburgh to calculate the absorption of infrared radiation by atmospheric CO2 and water vapour. Using 'Stefan's law' (better known as the Stefan-Boltzmann law), he formulated his greenhouse law. In its original form, Arrhenius' greenhouse law reads as follows:

if the quantity of carbonic acid [CO2] increases in geometric progression, the augmentation of the temperature will increase nearly in arithmetic progression.

The following equivalent formulation of Arrhenius' greenhouse law is still used today:[19]

\Delta F = \alpha \ln(C/C_0)

Here C is carbon dioxide (CO2) concentration measured in parts per million by volume (ppmv); C0 denotes a baseline or unperturbed concentration of CO2, and ΔF is the radiative forcing, measured in watts per square meter. The constant alpha (α) has been assigned a value between five and seven.[19]

Arrhenius at the first Solvay conference on chemistry in 1922 in Brussels.

Based on information from his colleague Arvid Högbom, Arrhenius was the first person to predict that emissions of carbon dioxide from the burning of fossil fuels and other combustion processes were large enough to cause global warming. In his calculation Arrhenius included the feedback from changes in water vapor as well as latitudinal effects, but he omitted clouds, convection of heat upward in the atmosphere, and other essential factors. His work is currently seen less as an accurate prediction of global warming than as the first demonstration that it should be taken as a serious possibility.

Svante Arrhenius (1909)

Arrhenius' absorption values for CO2 and his conclusions met criticism by Knut Ångström in 1900, who published the first modern infrared spectrum of CO2 with two absorption bands, and published experimental results that seemed to show that absorption of infrared radiation by the gas in the atmosphere was already "saturated" so that adding more could make no difference. Arrhenius replied strongly in 1901 (Annalen der Physik), dismissing the critique altogether. He touched the subject briefly in a technical book titled Lehrbuch der kosmischen Physik (1903). He later wrote Världarnas utveckling (1906) (German: Das Werden der Welten [1907], English: Worlds in the Making [1908]) directed at a general audience, where he suggested that the human emission of CO2 would be strong enough to prevent the world from entering a new ice age, and that a warmer earth would be needed to feed the rapidly increasing population:

"To a certain extent the temperature of the earth's surface, as we shall presently see, is conditioned by the properties of the atmosphere surrounding it, and particularly by the permeability of the latter for the rays of heat." (p46)
"That the atmospheric envelopes limit the heat losses from the planets had been suggested about 1800 by the great French physicist Fourier. His ideas were further developed afterwards by Pouillet and Tyndall. Their theory has been styled the hot-house theory, because they thought that the atmosphere acted after the manner of the glass panes of hot-houses." (p51)
"If the quantity of carbonic acid [CO2] in the air should sink to one-half its present percentage, the temperature would fall by about 4°; a diminution to one-quarter would reduce the temperature by 8°. On the other hand, any doubling of the percentage of carbon dioxide in the air would raise the temperature of the earth's surface by 4°; and if the carbon dioxide were increased fourfold, the temperature would rise by 8°." (p53)
"Although the sea, by absorbing carbonic acid, acts as a regulator of huge capacity, which takes up about five-sixths of the produced carbonic acid, we yet recognize that the slight percentage of carbonic acid in the atmosphere may by the advances of industry be changed to a noticeable degree in the course of a few centuries." (p54)
"Since, now, warm ages have alternated with glacial periods, even after man appeared on the earth, we have to ask ourselves: Is it probable that we shall in the coming geological ages be visited by a new ice period that will drive us from our temperate countries into the hotter climates of Africa? There does not appear to be much ground for such an apprehension. The enormous combustion of coal by our industrial establishments suffices to increase the percentage of carbon dioxide in the air to a perceptible degree." (p61)
"We often hear lamentations that the coal stored up in the earth is wasted by the present generation without any thought of the future, and we are terrified by the awful destruction of life and property which has followed the volcanic eruptions of our days. We may find a kind of consolation in the consideration that here, as in every other case, there is good mixed with the evil. By the influence of the increasing percentage of carbonic acid in the atmosphere, we may hope to enjoy ages with more equable and better climates, especially as regards the colder regions of the earth, ages when the earth will bring forth much more abundant crops than at present, for the benefit of rapidly propagating mankind." (p63)

Nowadays, the accepted explanation is that orbital forcing sets the timing for ice ages with CO2 acting as an essential amplifying feedback.

Arrhenius estimated based on the CO2 levels at the time, that reducing levels by 0.62 – 0.55 would decrease temperatures by 4–5 °C (Celsius) and an increase of 2.5 to 3 times of CO2 would cause a temperature rise of 8–9 °C in the Arctic.[17][20] In his book Worlds in the Making he described the "hot-house" theory of the atmosphere.[21]

See also

Bibliography

References

  1. "Arrhenius, Svante August" in Chambers's Encyclopædia. London: George Newnes, 1961, Vol. 1, p. 635.
  2. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1903/index.html
  3. 1 2 3 Harris, William; Levey, Judith, eds. (1975). The New Columbia Encyclopedia (4th ed.). New York City: Columbia University. p. 155. ISBN 0-231035-721.
  4. 1 2 3 McHenry, Charles, ed. (1992). The New Encyclopedia Britannica 1 (15 ed.). Chicago: Encyclopedia Britannica, Inc. p. 587. ISBN 085-229553-7.
  5. 1 2 3 Cillispie, Charles, ed. (1970). Dictionary of Scientific Biography (1 ed.). New York City: Charles Scribner's Sons. pp. 296–302. ISBN 0-684101-122.
  6. Patrick Coffey, Cathedrals of Science: The Personalities and Rivalries That Made Modern Chemistry, Oxford University Press, 2008,
  7. Royal Society. "Fellows of the Royal Society".
  8. Willard Gibbs Award
  9. "Book of Members, 1780-2010: Chapter A" (PDF). American Academy of Arts and Sciences. Retrieved 25 April 2011.
  10. "Svante August Arrhenius (1859 - 1927)". Royal Netherlands Academy of Arts and Sciences. Retrieved 19 July 2015.
  11. Svante Arrhenius (1907). Immunochemistry; the application of the principles of physical chemistry to the study of the biological antibodies. The Macmillan Company.
  12. Arrhenius, S., Worlds in the Making: The Evolution of the Universe. New York, Harper & Row, 1908,
  13. Maria Björkman, Sven Widmalm (2010). "Selling eugenics: the case of Sweden". doi:10.1098/rsnr.2010.0009.
  14. Gunnar Broberg, Nils Roll-Hansen (1996). Eugenics and the Welfare State: Sterilization Policy in Denmark, Sweden, Norway, and Finland. Michigan State University Press.
  15. Gordon Stein (1988). The encyclopedia of unbelief 1. Prometheus Books. p. 594. ISBN 9780879753078. Svante Arrhenius (I859-I927), recipient of the Nobel Prize in chemistry (I903), was a declared atheist and the author of The Evolution of the Worlds and other works on cosmic physics.
  16. NNDB.com. "Svante Arrhenius". Soylent Communications. Retrieved 11 September 2012.
  17. 1 2 "On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground" (PDF). Philosophical Magazine and Journal of Science 41 (5): 237–276. 1896.
  18. "On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground". Publications of the Astronomical Society of the Pacific 9 (54): 14. 1897. Bibcode:1897PASP....9...14A. doi:10.1086/121158.
  19. 1 2 Martin E. Walter, "Earthquakes and Weatherquakes: Mathematics and Climate Change", Notices of the American Mathematical Society, Volume 57, Number 10, page 1278 (November 2010).
  20. NASA. "Svante Arrhenius".
  21. NASA. "Svante Arrhenius".

Further reading

External links

Wikimedia Commons has media related to Svante Arrhenius.
This article is issued from Wikipedia - version of the Sunday, May 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.