7-simplex

Regular octaexon
(7-simplex)

Orthogonal projection
inside Petrie polygon
TypeRegular 7-polytope
Familysimplex
Schläfli symbol {3,3,3,3,3,3}
Coxeter-Dynkin diagram
6-faces8 6-simplex
5-faces28 5-simplex
4-faces56 5-cell
Cells70 tetrahedron
Faces56 triangle
Edges28
Vertices8
Vertex figure6-simplex
Petrie polygonoctagon
Coxeter group A7 [3,3,3,3,3,3]
DualSelf-dual
Propertiesconvex

In 7-dimensional geometry, a 7-simplex is a self-dual regular 7-polytope. It has 8 vertices, 28 edges, 56 triangle faces, 70 tetrahedral cells, 56 5-cell 5-faces, 28 5-simplex 6-faces, and 8 6-simplex 7-faces. Its dihedral angle is cos−1(1/7), or approximately 81.79°.

Alternate names

It can also be called an octaexon, or octa-7-tope, as an 8-facetted polytope in 7-dimensions. The name octaexon is derived from octa for eight facets in Greek and -ex for having six-dimensional facets, and -on. Jonathan Bowers gives an octaexon the acronym oca.[1]

Coordinates

The Cartesian coordinates of the vertices of an origin-centered regular octaexon having edge length 2 are:

\left(\sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ \sqrt{1/6},\ \sqrt{1/3},\ \pm1\right)
\left(\sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ \sqrt{1/6},\ -2\sqrt{1/3},\ 0\right)
\left(\sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ -\sqrt{3/2},\ 0,\ 0\right)
\left(\sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ -2\sqrt{2/5},\ 0,\ 0,\ 0\right)
\left(\sqrt{1/28},\ \sqrt{1/21},\ -\sqrt{5/3},\ 0,\ 0,\ 0,\ 0\right)
\left(\sqrt{1/28},\ -\sqrt{12/7},\ 0,\ 0,\ 0,\ 0,\ 0\right)
\left(-\sqrt{7/4},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)

More simply, the vertices of the 7-simplex can be positioned in 8-space as permutations of (0,0,0,0,0,0,0,1). This construction is based on facets of the 8-orthoplex.

Images

7-Simplex in 3D

Model created using straws (edges) and plasticine balls (vertices) in triakis tetrahedral envelope

7-Simplex as an Amplituhedron Surface

7-simplex to 3D with camera perspective showing hints of its 2D Petrie projection
orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Related polytopes

This polytope is a facet in the uniform tessellation 331 with Coxeter-Dynkin diagram:

This polytope is one of 71 uniform 7-polytopes with A7 symmetry.

Notes

  1. Richard Klitzing, 7D uniform polytopes (polyexa), x3o3o3o3o3o - oca

External links

This article is issued from Wikipedia - version of the Tuesday, April 21, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.