9-cube

9-cube
Enneract

Orthogonal projection
inside Petrie polygon
Orange vertices are doubled, yellow have 4, and the green center has 8
TypeRegular 9-polytope
Familyhypercube
Schläfli symbol {4,37}
Coxeter-Dynkin diagram
8-faces18 {4,36}
7-faces144 {4,35}
6-faces672 {4,34}
5-faces2016 {4,33}
4-faces4032 {4,3,3}
Cells5376 {4,3}
Faces4608 {4}
Edges2304
Vertices512
Vertex figure8-simplex
Petrie polygonoctadecagon
Coxeter groupC9, [37,4]
Dual9-orthoplex
Propertiesconvex

In geometry, a 9-cube is a nine-dimensional hypercube with 512 vertices, 2304 edges, 4608 square faces, 5376 cubic cells, 4032 tesseract 4-faces, 2016 5-cube 5-faces, 672 6-cube 6-faces, 144 7-cube 7-faces, and 18 8-cube 8-faces.

It can be named by its Schläfli symbol {4,37}, being composed of three 8-cubes around each 7-face. It is also called an enneract, a portmanteau of tesseract (the 4-cube) and enne for nine (dimensions) in Greek. It can also be called a regular octadeca-9-tope or octadecayotton, as a nine-dimensional polytope constructed with 18 regular facets.

It is a part of an infinite family of polytopes, called hypercubes. The dual of a 9-cube can be called a 9-orthoplex, and is a part of the infinite family of cross-polytopes.

Cartesian coordinates

Cartesian coordinates for the vertices of a 9-cube centered at the origin and edge length 2 are

(±1,±1,±1,±1,±1,±1,±1,±1,±1)

while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5, x6, x7, x8) with −1 < xi < 1.

Projections


This 9-cube graph is an orthogonal projection. This orientation shows columns of vertices positioned a vertex-edge-vertex distance from one vertex on the left to one vertex on the right, and edges attaching adjacent columns of vertices. The number of vertices in each column represents rows in Pascal's triangle, being 1:9:36:84:126:126:84:36:9:1.

Petrie polygon, skew orthographic projection

Images

orthographic projections
B9 B8 B7
[18] [16] [14]
B6 B5
[12] [10]
B4 B3 B2
[8] [6] [4]

Derived polytopes

Applying an alternation operation, deleting alternating vertices of the 9-cube, creates another uniform polytope, called a 9-demicube, (part of an infinite family called demihypercubes), which has 18 8-demicube and 256 8-simplex facets.

Notes

    References

    External links

    This article is issued from Wikipedia - version of the Saturday, April 05, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.