8-cube

8-cube
Octeract

Orthogonal projection
inside Petrie polygon
TypeRegular 8-polytope
Familyhypercube
Schläfli symbol {4,36}
Coxeter-Dynkin diagrams







7-faces16 {4,35}
6-faces112 {4,34}
5-faces448 {4,33}
4-faces1120 {4,32}
Cells1792 {4,3}
Faces1792 {4}
Edges1024
Vertices256
Vertex figure7-simplex
Petrie polygonhexadecagon
Coxeter groupC8, [36,4]
Dual8-orthoplex
Propertiesconvex

In geometry, an 8-cube is an eight-dimensional hypercube (8-cube). It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces.

It is represented by Schläfli symbol {4,36}, being composed of 3 7-cubes around each 6-face. It is called an octeract, a portmanteau of tesseract (the 4-cube) and oct for eight (dimensions) in Greek. It can also be called a regular hexdeca-8-tope or hexadecazetton, being an 8-dimensional polytope constructed from 16 regular facets.

Related polytopes

It is a part of an infinite family of polytopes, called hypercubes. The dual of an 8-cube can be called a 8-orthoplex, and is a part of the infinite family of cross-polytopes.

Cartesian coordinates

Cartesian coordinates for the vertices of an 8-cube centered at the origin and edge length 2 are

(±1,±1,±1,±1,±1,±1,±1,±1)

while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5, x6, x7) with -1 < xi < 1.

Projections

orthographic projections
B8 B7
[16] [14]
B6 B5
[12] [10]
B4 B3 B2
[8] [6] [4]
A7 A5 A3
[8] [6] [4]

This 8-cube graph is an orthogonal projection. This orientation shows columns of vertices positioned a vertex-edge-vertex distance from one vertex on the left to one vertex on the right, and edges attaching adjacent columns of vertices. The number of vertices in each column represents rows in Pascal's triangle, being 1:8:28:56:70:56:28:8:1.

Derived polytopes

Applying an alternation operation, deleting alternating vertices of the octeract, creates another uniform polytope, called a 8-demicube, (part of an infinite family called demihypercubes), which has 16 demihepteractic and 128 8-simplex facets.

References

External links

This article is issued from Wikipedia - version of the Sunday, April 17, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.