British Rail 10100

British Railways 10100

The Fell Diesel at Derby Works
Type and origin
Power type Diesel-mechanical
Builder LMS, Derby Works
Build date 1952
Specifications
Configuration 4-8-4
UIC class 2′D2′
Gauge 4 ft 8 12 in (1,435 mm) standard gauge
Leading dia. 39 in (0.991 m)
Driver dia. 51 in (1.295 m)
Minimum curve 5 chains (101 m)
Wheelbase 41 ft 4 in (12.60 m)
Length 50 ft 0 in (15.24 m)
Width 9 ft 0 in (2.74 m)
Height 13 ft 0 in (3.96 m)
Loco weight 120 long tons (122 t; 134 short tons)
Fuel capacity 720 imp gal (3,300 l; 860 US gal)
Coolant cap 60 imp gal (270 l; 72 US gal)
Water cap 500 imp gal (2,300 l; 600 US gal)
Prime mover Paxman 12RPH, 4 off
Cylinder size 7 in × 7 34 in (178 mm × 197 mm)
Transmission Vulcan Sinclair SCRD fluid; Fell central gearbox
Train heating Steam generator
Train brakes Vacuum
Performance figures
Maximum speed 84 mph (135 km/h)
Power output 2,000 bhp (1,500 kW)
Tractive effort 25,000 lbf (111 kN)
Loco brakeforce 38 long tons-force (380 kN)
Career
Operators British Railways
Power class 6P5F, later Type 4
Numbers 10100
Nicknames Fell locomotive
Withdrawn September 1958
Scrapped Derby Works, January 1960

British Railways 10100 was an unusual experimental diesel locomotive known informally as The Fell Diesel Locomotive (after Lt. Col. L. F. R. Fell, who was one of the designers). It was the joint production of Davey Paxman & Co, Shell Refining & Marketing Co and Lt-Col L. F .R. Fell, built for them by the London, Midland and Scottish Railway at Derby. Sir Harry Ricardo was also involved. By the time it emerged in 1950, nationalisation had taken place and it carried British Railways livery. The locomotive had six diesel engines, four of them used for traction. There were two auxiliary engines, both of which were 150 hp (110 kW) AEC 6-cylinder units, and these drove the pressure-chargers for the main engines and the purpose of this arrangement was to enable the main engines to deliver very high torque at low crankshaft speed.

Design

The design for 10100, a collaboration between Fell Developments Ltd and H. G. Ivatt of the LMS, aimed to address several of the weaknesses perceived of diesel powered rail traction. Weight was reduced by using several small engines, meaning that both the engines and their supporting structure could be lighter.[1] This was also expected to save time in maintenance as an individual diesel could be exchanged more easily and with lighter equipment.

Transmission

Using differential gearing to transmit the power, it was originally built as a 4-8-4 with the coupling rods connecting the centre four pairs of driving wheels. It was modified to 4-4+4-4. At 2,000 hp (1,500 kW) it was the most powerful of BR's non-steam locomotives at the time. From 1951 it worked the expresses from Manchester to London, proving some 25% more powerful than 5XP 4-6-0s.[2] While the mechanical transmission made it much lighter than the diesel-electric locomotives, its complicated mechanism made it difficult to maintain (a working model of the transmission is on display at the National Railway Museum, York).

The locomotive had four main engines. Each engine was connected to the gearbox via a hydraulic coupling, which could be filled with oil to transmit power or drained of oil to disconnect that engine from the transmission. One-way clutches prevented rotation of the input shafts when the couplings were drained. The engine outputs were combined in pairs by two sets of differential gearing, and the output shafts from these two gearsets were then combined by a third differential gearset to drive the main output shaft.

The effect of this arrangement was that the gear ratio between an engine and the output shaft depended on how many engines were driving the transmission. Gear ratio selection was accomplished not by "changing gear" in the conventional sense, but by filling or draining the hydraulic couplings to connect or disconnect the engines from the transmission. With only one hydraulic coupling filled with oil and the other three engines disconnected and their respective input shafts to the transmission locked by the one-way clutches, the single engine drove the output shaft through an effective gear ratio of 4:1. With two engines driving, the effective gear ratio was 2:1; with three engines, 1.33:1; and with all four engines, unity. In other words, the effective gear ratio of the transmission was the inverse of the number of engines driving it.

It can be seen from this that unlike the transmission of a car, there was no overall torque-multiplication effect from selecting a lower gear. The 4:1 mechanical advantage afforded to the single engine driving in first gear was cancelled out by the fact that there was only one engine operating, so the maximum output torque from the transmission was the same as was available in top gear with all four engines operating. The same argument applies to second and third gears. The transmission of this locomotive, therefore, unlike almost all other locomotive transmissions, did not provide any means of matching the torque characteristics of the engine(s) to the requirements of the locomotive; it did not provide for an increased torque output at low speeds for starting and hill climbing. It served only to match the output speed of the engine(s) to the requirements of the locomotive.

The requirement for high starting torque was met in the Fell not by the transmission characteristics but by altering the torque characteristics of the engines themselves. Normally a diesel engine aspires charge at a mass flow rate proportional to its rotational speed; the faster it rotates, the more charge it can aspire, and this leads to a power output curve which rises more or less linearly with rotational speed until various limiting factors become significant.

The Fell Diesel south of Belper on a Manchester-London express

In the Fell locomotive, however, the four main drive engines received their charge from Roots blowers driven by two further auxiliary engines which were governed such that when the traction power demand was more than minimal, they operated at essentially a constant speed. Since a Roots blower is a positive-displacement device, this meant that the mass flow rate at which charge was delivered to the main engines depended not on the speed of the main engines but on that of the auxiliary engines, so the power output of the main engines was essentially defined by the speed of the auxiliary engines.

Since the speed of the auxiliary engines was held constant, the main engines had a power curve which was constant with rotational speed; since power is the product of torque and rotational speed, the main engines were endowed with a torque curve inversely proportional to speed, producing maximum torque at a low speed and reducing as the speed increased. Thus was provided the necessary increased low-speed torque output for starting and hill climbing.[3]

Withdrawal

It was withdrawn after a serious fire at Manchester. The industrial consortium sold it to British Railways in 1955 for whom it remained in service until 1958 when it was withdrawn after sustaining accidental damage to the main gearbox. It was allocated to Derby and it was broken up at BR Derby Works in June 1960.

See also

References

  1. Carr, Richard. "The Fell Locomotive - No 10100". Richard Carr's Paxman History Pages. Retrieved 2008-12-02.
  2. Bentley, C. (1997) British Railways Operating History: Volume 1, The Peak District, Carnarvon: XPress Publishing
  3. Technical details of the locomotive

Further reading

External links

This article is issued from Wikipedia - version of the Monday, March 21, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.