Immunodeficiency

Immune deficiency
Classification and external resources
Specialty hematology
ICD-10 D84.9
ICD-9-CM 279.3
DiseasesDB 21506
Patient UK Immunodeficiency
MeSH D007153

Immunodeficiency (or immune deficiency) is a state in which the immune system's ability to fight infectious disease is compromised or entirely absent. Most cases of immunodeficiency are acquired ("secondary") due to extrinsic factors that affect the patient's immune system. Examples of these extrinsic factors include infections, such as by Human Immunodeficiency virus (HIV), extremes of age and environmental factors, such as nutrition.[1] In the clinical setting, the immuno-suppression quality of some drugs, such as steroids, can be utilised. Examples of such use is in transplant surgery as an anti-rejection measure and in patients suffering from an over-active immune system. Some people are born with defects in their immune system, or primary immunodeficiency. A person who has an immunodeficiency of any kind is said to be immunocompromised. An immunocompromised person may be particularly vulnerable to opportunistic infections, in addition to normal infections that could affect everyone. Immunodeficiency may also decrease cancer immunosurveillance

Types

By affected component

In reality, immunodeficiency often affects multiple components, with notable examples including severe combined immunodeficiency (which is primary) and acquired immune deficiency syndrome (which is secondary).

Comparison of immunodeficiencies by affected component
Affected components Main causes[4] Main pathogens of resultant infections[4]
Humoral immune deficiency B cells, plasma cells or antibodies
T cell deficiency T cells Intracellular pathogens, including Herpes simplex virus, Mycobacterium, Listeria,[5] and intracellular fungal infections.[4]
Neutropenia Neutrophil granulocytes
Asplenia Spleen
Complement deficiency Complement system
  • Congenital deficiencies

Primary or secondary

Distinction between primary versus secondary immunodeficiencies are based on, respectively, whether the cause originates in the immune system itself or is, in turn, due to insufficiency of a supporting component of it or an external decreasing factor of it.

Primary immunodeficiency

A number of rare diseases feature a heightened susceptibility to infections from childhood onward. Primary Immunodeficiency is also known as congenital immunodeficiencies.[7] Many of these disorders are hereditary and are autosomal recessive or X-linked. There are over 80 recognised primary immunodeficiency syndromes; they are generally grouped by the part of the immune system that is malfunctioning, such as lymphocytes or granulocytes.[8]

The treatment of primary immunodeficiencies depends on the nature of the defect, and may involve antibody infusions, long-term antibiotics and (in some cases) stem cell transplantation.

Secondary immunodeficiencies

Further information: Immunosuppression

Secondary immunodeficiencies, also known as acquired immunodeficiencies, can result from various immunosuppressive agents, for example, malnutrition, aging and particular medications (e.g. chemotherapy, disease-modifying antirheumatic drugs, immunosuppressive drugs after organ transplants, glucocorticoids). For medications, the term immunosuppression generally refers to both beneficial and potential adverse effects of decreasing the function of the immune system, while the term immunodeficiency generally refers solely to the adverse effect of increased risk for infection.

Many specific diseases directly or indirectly cause immunosuppression. This includes many types of cancer, particularly those of the bone marrow and blood cells (leukemia, lymphoma, multiple myeloma), and certain chronic infections. Immunodeficiency is also the hallmark of acquired immunodeficiency syndrome (AIDS),[7] caused by the human immunodeficiency virus (HIV). HIV directly infects a small number of T helper cells, and also impairs other immune system responses indirectly.

Immunodeficiency and autoimmunity

There are a large number of immunodeficiency syndromes that present clinical and laboratory characteristics of autoimmunity. The decreased ability of the immune system to clear infections in these patients may be responsible for causing autoimmunity through perpetual immune system activation.[9]

One example is common variable immunodeficiency (CVID) where multiple autoimmune diseases are seen, e.g. inflammatory bowel disease, autoimmune thrombocytopenia and autoimmune thyroid disease. Familial hemophagocytic lymphohistiocytosis, an autosomal recessive primary immunodeficiency, is another example. Pancytopenia, rashes, lymphadenopathy and hepatosplenomegaly are commonly seen in these patients. Presence of multiple uncleared viral infections due to lack of perforin are thought to be responsible. In addition to chronic and/or recurrent infections many autoimmune diseases including arthritis, autoimmune hemolytic anemia, scleroderma and type 1 diabetes are also seen in X-linked agammaglobulinemia (XLA). Recurrent bacterial and fungal infections and chronic inflammation of the gut and lungs are seen in chronic granulomatous disease (CGD) as well. CGD is caused by a decreased production of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase by neutrophils. Hypomorphic RAG mutations are seen in patients with midline granulomatous disease; an autoimmune disorder that is commonly seen in patients with granulomatosis with polyangiitis (Wegner’s disease) and NK/T cell lymphomas. Wiskott-Aldrich syndrome (WAS) patients also present with eczema, autoimmune manifestations, recurrent bacterial infections and lymphoma. In autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) also autoimmunity and infections coexist: organ-specific autoimmune manifestations (e.g. hypoparathyroidism and adrenocortical failure) and chronic mucocutaneous candidiasis. Finally, IgA deficiency is also sometimes associated with the development of autoimmune and atopic phenomena.

Management

Prevention of Pneumocystis pneumonia using trimethoprim/sulfamethoxazole is useful in those who are immunocompromised.[10]

See also

References

  1. Chinen, J. and Shearer, W. (2010) ‘Secondary Immunodeficiencies, including HIV infection’, Journal of Allergy and Clinical Immunology, 125(2), pp. 195-203.
  2. Immunodeficiency by Dr. Saul Greenberg. University of Toronto. Last updated, on February 5, 2009
  3. Medscape > T-cell Disorders. Author: Robert A Schwartz, MD, MPH; Chief Editor: Harumi Jyonouchi, MD. Updated: May 16, 2011
  4. 1 2 3 If not otherwise specified in boxes, then reference for entries is: Page 432, Chapter 22, Table 22.1 in: Jones, Jane; Bannister, Barbara A.; Gillespie, Stephen H. (2006). Infection: Microbiology and Management. Wiley-Blackwell. ISBN 1-4051-2665-5.
  5. Page 435 in: Jones, Jane; Bannister, Barbara A.; Gillespie, Stephen H. (2006). Infection: Microbiology and Management. Wiley-Blackwell. ISBN 1-4051-2665-5.
  6. 1 2 3 4 Brigden, M. L. (2001). "Detection, education and management of the asplenic or hyposplenic patient". American family physician 63 (3): 499–506, 508. PMID 11272299.
  7. 1 2 Basic Immunology: Functions and Disorders of the Immune System, 3rd Ed. 2011.
  8. Rosen FS, Cooper MD, Wedgwood RJ (1995). "The primary immunodeficiencies". N. Engl. J. Med. 333 (7): 431–40. doi:10.1056/NEJM199508173330707. PMID 7616993.
  9. Grammatikos A, Tsokos G (2012). "Immunodeficiency and autoimmunity: lessons from systemic lupus erythematosus". Trends Mol Med 18 (2): 101–108. doi:10.1016/j.molmed.2011.10.005. PMC 3278563. PMID 22177735.
  10. Stern, A; Green, H; Paul, M; Vidal, L; Leibovici, L (Oct 1, 2014). "Prophylaxis for Pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients.". The Cochrane database of systematic reviews 10: CD005590. doi:10.1002/14651858.CD005590.pub3. PMID 25269391.

External links

This article is issued from Wikipedia - version of the Monday, April 11, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.