List of device bit rates
This is a list of device bit rates, or physical layer information rates, net bit rates, useful bit rates, peak bit rates or digital bandwidth capacity, at which digital interfaces of computer peripheral equipment and network devices can communicate over various kinds of buses and networks. The distinction can be arbitrary between a bus, (which is inside a box and usually relies on many parallel wires), and a communications network cable, (which is external, between boxes and rarely relies on more than four wires). Many device interfaces or protocols (e.g., SATA, USB, SCSI, PCI and a few variants of Ethernet) are used both inside many-device boxes, such as a PC, and one-device-boxes, such as a hard drive enclosure. Accordingly, this page lists both the internal ribbon and external communications cable standards together in one sortable table.
Factors limiting actual performance, criteria for real decisions
Most of the listed rates are theoretical maximum throughput measures; in practice, the actual effective throughput is almost inevitably lower in proportion to the load from other devices (network/bus contention), interframe gap, and other overhead in data link layer protocols etc. The maximum goodput (for example, the file transfer rate) may be even lower due to higher layer protocol overhead and data packet retransmissions caused by line noise or interference such as crosstalk, or lost packets in congested intermediate network nodes. All protocols lose something, and the more robust ones that deal resiliently with very many failure situations tend to lose more maximum throughput to get higher total long term rates.
Device interfaces where one bus transfers data via another will be limited to the throughput of the slowest interface, at best. For instance, SATA 6G controllers on one PCIe 5G channel will be limited to the 5G rate and have to employ more channels to get around this problem. Early implementations of new protocols very often have this kind of problem. The physical phenomena on which the device relies (such as spinning platters in a hard drive) will also impose limits; for instance, no spinning platter shipping in 2009 saturates SATA II (3 Gbit/s), so moving from this 3 Gbit/s interface to USB3 at 4.8 Gbit/s for one spinning drive will result in no increase in realized transfer rate.
Contention in a wireless or noisy spectrum, where the physical medium is entirely out of the control of those who specify the protocol, requires measures that also use up throughput. Wireless devices, BPL, and modems may produce a higher line rate or gross bit rate, due to error-correcting codes and other physical layer overhead. It is extremely common for throughput to be far less than half of theoretical maximum, though the more recent technologies (notably BPL) employ preemptive spectrum analysis to avoid this and so have much more potential to reach actual gigabit rates in practice than prior modems.
Another factor reducing throughput is deliberate policy decisions made by Internet service providers that are made for contractual, risk management, aggregation saturation, or marketing reasons. Examples are rate limiting, bandwidth throttling, and the assignment of IP addresses to groups. These practices tend to minimize the throughput available to every user, but maximize the number of users that can be supported on one backbone.
Furthermore, chips are often not available in order to implement the fastest rates. AMD, for instance, does not support the 32-bit HyperTransport interface on any CPU it has shipped as of the end of 2009. Additionally, WiMax service providers in the US typically support only up to 4 Mbit/s as of the end of 2009.
Choosing service providers or interfaces based on theoretical maxima is unwise, especially for commercial needs. A good example is large scale data centers, which should be more concerned with price per port to support the interface, wattage and heat considerations, and total cost of the solution. Because some protocols such as SCSI and Ethernet now operate many orders of magnitude faster than when originally deployed, scalability of the interface is one major factor, as it prevents costly shifts to technologies that are not backward compatible. Underscoring this is the fact that these shifts often happen involuntarily or by surprise, especially when a vendor abandons support for a proprietary system.
Conventions
Prefixes for multiples of bits (b) or bytes (B) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
By convention, bus and network data rates are denoted either in bits per second (bit/s) or bytes per second (B/s). In general, parallel interfaces are quoted in B/s and serial in bit/s. The more commonly used is shown below in bold type.
On devices like modems, bytes may be more than 8 bits long because they may be individually padded out with additional start and stop bits; the figures below will reflect this. Where channels use line codes (such as Ethernet, Serial ATA and PCI Express), quoted rates are for the decoded signal.
The figures below are simplex data rates, which may conflict with the duplex rates vendors sometimes use in promotional materials. Where two values are listed, the first value is the downstream rate and the second value is the upstream rate.
All quoted figures are in metric decimal units. Note that these aren't the traditional binary prefixes for memory size. These decimal prefixes have long been established in data communications. This occurred before 1998 when IEC and other organizations introduced new binary prefixes and attempted to standardize their use across all computing applications.
Bandwidths
The figures below are grouped by network or bus type, then sorted within each group from lowest to highest bandwidth; gray shading indicates a lack of known implementations.
Time Signal Station to Radio Clock
Technology | Max. rate | Year | |
---|---|---|---|
IRIG and related | 1 bit/s | ~0.2 characters/s [1][2] |
Teletypewriter (TTY) or telecommunications device for the deaf (TDD)
Technology | Max. rate | Year | |
---|---|---|---|
TTY (V.18) | bit/s 45.4545 | 6 characters/s[3] | |
TTY (V.18) | bit/s 50 | 6.6 characters/s | |
NTSC Line 21 Closed Captioning | kbit/s 1 | ~100 characters/s |
Modems (narrowband and broadband)
Narrowband (POTS: 3.1 kHz channel)
Technology | Rate | Rate ex. overhead | Year |
---|---|---|---|
Morse code (skilled operator) | kbit/s 0.021[4] | cps ( 4 wpm) ~40[5] | 1844 |
Modem 110 baud (Bell 101) | kbit/s 0.11 | kB/s (~10 cps) 0.010[6] | 1959 |
Modem 300 (300 baud; Bell 103 or V.21) | kbit/s 0.3 | kB/s (~30 cps) 0.03[6] | 1962[7] |
Modem 1200 (600 baud; Bell 212A or V.22) | kbit/s 1.2 | kB/s (~120 cps) 0.12[6] | 1976 |
Modem 1200/75 (600 baud; V.23) | kbit/s 1.2/0.075 | kB/s (~120 cps) 0.12/0.0075[6] | 1988 [8] |
Modem 2400 (600 baud; V.22bis) | kbit/s 2.4 | kB/s 0.3[6] | 1988 [8] |
Modem 4800 (1600 baud; V.27ter) | kbit/s 4.8 | kB/s 0.6[6] | 1988 [8] |
Modem 9600 (2400 baud; V.32) | kbit/s 9.6 | kB/s 1.2[6] | 1989[7] |
Modem 14.4 (2400 baud; V.32bis) | kbit/s 14.4 | kB/s 1.8[6] | 1991[7] |
Modem 28.8 (3200 baud; V.34-1994) | kbit/s 28.8 | kB/s 3.6[6] | 1994 |
Modem 33.6 (3429 baud; V.34-1996/98) | kbit/s 33.6 | kB/s 4.2[6] | 1996[8] |
Modem 56k (8000/3429 baud; V.90) | kbit/s 56.0/33.6[9] | kB/s 7/4.2 | 1998 |
Modem 56k (8000/8000 baud; V.92) | kbit/s 56.0/48.0[9] | kB/s 7/6 | 2001 |
Modem data compression (variable; V.92/V.44) | kbit/s 56.0–320.0[9] | kB/s 7–40 | 2000[8] |
ISP-side text/image compression (variable) | 000.0 kbit/s 56.0–1 | kB/s 7–125 | 1998[8] |
ISDN Basic Rate Interface (single/dual channel) | kbit/s 64/128[10] | kB/s 8/16 | 1986[11] |
IDSL (dual ISDN + 16 kbit/s data channels) | kbit/s 144 | kB/s 18 | 2000[12] |
Broadband (hundreds of kHz wide)
Technology | Rate | Rate ex. overhead | Year |
---|---|---|---|
HDSL ITU G.991.1 aka DS1 | kbit/s 1544 | kB/s 193 | 1998[13] |
MSDSL | kbit/s 2000 | kB/s 250 | ? |
SDSL | kbit/s 2320 | kB/s 290 | ? |
SHDSL ITU G.991.2 | kbit/s 5690 | kB/s 711 | 2001 |
ADSL (G.lite) | kbit/s 1536/512 | kB/s 192/64 | 1998 |
ADSL (G.dmt) | kbit/s 8192/1024 | kB/s 1024/128 | 1999 |
ADSL2 | 288/1440 kbit/s 12 | kB/s 1536/180 | 2002 |
ADSL2+ | 576/3584 kbit/s 24 | kB/s 3072/448 | 2003 |
DOCSIS v1.0[14] (cable modem) | Mbit/s 38/9 | kB/s 4750/1125 | 1997 |
DOCSIS v2.0[15] (cable modem) | Mbit/s 38/27 | kB/s 4750/3375 | 2001 |
VDSL ITU G.993.1 | Mbit/s 52 | kB/s 7000 | 2001 |
VDSL2 ITU G.993.2 | Mbit/s 100 | 500 kB/s 12 | 2006 |
DOCSIS v3.0[16] (cable modem) | Mbit/s 160/120 | 000/15000 kB/s (~200,000,000 wpm) 20 | 2006 |
Uni-DSL | Mbit/s 200 | 000 kB/s 25 | 2006 |
BPON (G.983) fiber optic service | Mbit/s 622/155 | 700/19300 kB/s 77 | 2005[17] |
EPON (802.3ah) fiber optic service | Mbit/s 1000/1000 | 000/125000 kB/s 125 | 2008 |
DOCSIS v3.1[18] (cable modem) | 000/150 Mbit/s 10 | 250000/18750 kB/s 1 | 2015 |
GPON (G.984) fiber optic service | Mbit/s 2488/1244 | 000/155500 kB/s (~3 billion+ wpm) 311 | 2008[19] |
10G-PON (G.987) fiber optic service | 000/2500 Mbit/s 10 | 250000/312500 kB/s ( 1 billion+ wpm) ~12 | 2012[20] |
Mobile telephone interfaces
Technology | Download rate | Upload rate | Year | ||
---|---|---|---|---|---|
GSM CSD (2G) | kbit/s 14.4[21] | kB/s 1.8 | kbit/s 14.4 | kB/s 1.8 | |
HSCSD | kbit/s 57.6 | kB/s 5.4 | kbit/s 14.4 | kB/s 1.8 | |
GPRS (2.5G) | kbit/s 57.6 | kB/s 7.2 | kbit/s 28.8 | kB/s 3.6 | |
WiDEN | kbit/s 100 | kB/s 12.5 | kbit/s 100 | kB/s 12.5 | |
CDMA2000 1×RTT | kbit/s 153 | kB/s 18 | kbit/s 153 | kB/s 18 | |
EDGE (2.75G) (type 1 MS) | kbit/s 236.8 | kB/s 29.6 | kbit/s 236.8 | kB/s 29.6 | |
UMTS 3G | kbit/s 384 | kB/s 48 | kbit/s 384 | kB/s 48 | |
EDGE (type 2 MS) | kbit/s 473.6 | kB/s 59.2 | kbit/s 473.6 | kB/s 59.2 | |
EDGE Evolution (type 1 MS) | kbit/s 1184 | kB/s 148 | kbit/s 474 | kB/s 59 | |
EDGE Evolution (type 2 MS) | kbit/s 1894 | kB/s 237 | kbit/s 947 | kB/s 118 | |
1×EV-DO rev. 0 | kbit/s 2457 | kB/s 307.2 | kbit/s 153 | kB/s 19 | |
1×EV-DO rev. A | Mbit/s 3.1 | kB/s 397 | Mbit/s 1.8 | kB/s 230 | |
1×EV-DO rev. B | Mbit/s 14.7 | kB/s 1837 | Mbit/s 5.4 | kB/s 675 | |
HSPA (3.5G) | Mbit/s 13.98 | kB/s 1706 | Mbit/s 5.760 | kB/s 720 | |
4×EV-DO Enhancements (2×2 MIMO) | Mbit/s 34.4 | MB/s 4.3 | Mbit/s 12.4 | MB/s 1.55 | |
HSPA+ (2×2 MIMO) | Mbit/s 42 | MB/s 5.25 | Mbit/s 11.5 | MB/s 1.437 | |
15×EV-DO rev. B | Mbit/s 73.5 | MB/s 9.2 | Mbit/s 27 | MB/s 3.375 | |
UMB (2×2 MIMO) | Mbit/s 140 | MB/s 17.5 | Mbit/s 34 | MB/s 4.250 | |
LTE (2×2 MIMO) | Mbit/s 173 | MB/s 21.625 | Mbit/s 58 | MB/s 7.25 | |
UMB (4×4 MIMO) | Mbit/s 280 | MB/s 35 | Mbit/s 68 | MB/s 8.5 | |
EV-DO rev. C | Mbit/s 280 | MB/s 35 | Mbit/s 75 | MB/s 9 | |
LTE (4×4 MIMO) | Mbit/s 326 | MB/s 40.750 | Mbit/s 86 | MB/s 10.750 |
Wide area networks
Technology | Rate | Year | |
---|---|---|---|
DS0 | Mbit/s 0.064 | MB/s 0.008 | |
G.lite (aka ADSL Lite) | Mbit/s 1.536/0.512 | MB/s 0.192/0.064 | |
DS1 / T1 (and ISDN Primary Rate Interface) | Mbit/s 1.544 | MB/s 0.192 | |
E1 (and ISDN Primary Rate Interface) | Mbit/s 2.048 | MB/s 0.256 | |
G.SHDSL | Mbit/s 2.304 | MB/s 0.288 | |
LR-VDSL2 (4 to 5 km [long-]range) (symmetry optional) | Mbit/s 4 | MB/s 0.512 | |
SDSL[22] | Mbit/s 2.32 | MB/s 0.29 | |
T2 | Mbit/s 6.312 | MB/s 0.789 | |
ADSL[23] | Mbit/s 8.0/1.024 | MB/s 1.0/0.128 | |
E2 | Mbit/s 8.448 | MB/s 1.056 | |
ADSL2 | Mbit/s 12/3.5 | MB/s 1.5/0.448 | |
Satellite Internet[24] | Mbit/s 16/1 | MB/s 2.0/0.128 | |
ADSL2+ | Mbit/s 24/3.5 | MB/s 3.0/0.448 | |
E3 | Mbit/s 34.368 | MB/s 4.296 | |
DOCSIS v1.0 (cable modem)[14] | Mbit/s 38/9 | MB/s 4.75/1.125 | |
DOCSIS v2.0 (cable modem)[15] | Mbit/s 38/27 | MB/s 4.75/3.37 | |
DS3 / T3 ('45 Meg') | Mbit/s 44.736 | MB/s 5.5925 | |
STS-1 / OC-1 / STM-0 | Mbit/s 51.84 | MB/s 6.48 | |
VDSL (symmetry optional) | Mbit/s 100 | MB/s 12.5 | |
OC-3 / STM-1 | Mbit/s 155.52 | MB/s 19.44 | |
DOCSIS v3.0 (cable modem)[16] | Mbit/s 222.48/171.52 | MB/s 27.81/21.44 | |
VDSL2 (symmetry optional) | Mbit/s 250 | MB/s 31.25 | |
T4 | Mbit/s 274.176 | MB/s 34.272 | |
T5 | Mbit/s 400.352 | MB/s 50.044 | |
OC-9 | Mbit/s 466.56 | MB/s 58.32 | |
OC-12 / STM-4 | Mbit/s 622.08 | MB/s 77.76 | |
OC-18 | Mbit/s 933.12 | MB/s 116.64 | |
OC-24 | Gbit/s 1.244 | MB/s 155.5 | |
OC-36 | Gbit/s 1.900 | MB/s 237.5 | |
OC-48 / STM-16 | Gbit/s 2.488 | MB/s 311.04 | |
OC-96 | Gbit/s 4.976 | MB/s 622.08 | |
OC-192 / STM-64 | Gbit/s 9.953 | 125 GB/s 1.244 | |
10 Gigabit Ethernet WAN PHY | Gbit/s 9.953 | 125 GB/s 1.244 | |
10 Gigabit Ethernet LAN PHY | Gbit/s 10.000 | GB/s 1.25 | |
OC-256 | Gbit/s 13.271 | GB/s 1.659 | |
OC-768 / STM-256 | Gbit/s 39.813 | GB/s 4.976 | |
OC-1536 / STM-512 | Gbit/s 79.626 | GB/s 9.953 | |
OC-3072 / STM-1024 | Gbit/s 159.252 | GB/s 19.907 |
Local area networks
Technology | Rate | Year | |
---|---|---|---|
LocalTalk | kbit/s 230 | kB/s 28.8 | |
Econet | kbit/s 800 | kB/s 100 | 1981 |
Omninet | Mbit/s 1 | kB/s 125 | |
IBM PC Network | Mbit/s 2 | kB/s 250 | 1985 |
ARCNET (Standard) | Mbit/s 2.5 | kB/s 312.5 | 1977 |
Token Ring (Original) | Mbit/s 4 | kB/s 500 | 1985 |
Ethernet (10BASE-X) | Mbit/s 10 | MB/s 1.25 | 1980 (1985 IEEE Standard) |
Token Ring (Later) | Mbit/s 16 | MB/s 2 | 1989 |
ARCnet Plus | Mbit/s 20 | MB/s 2.5 | 1992 |
TNCS | Mbit/s 100 | MB/s 12.5 | 1993? |
100VG | Mbit/s 100 | MB/s 12.5 | 1995 |
Token Ring IEEE 802.5t | Mbit/s 100 | MB/s 12.5 | |
Fast Ethernet (100BASE-X) | Mbit/s 100 | MB/s 12.5 | 1995 |
FDDI | Mbit/s 100 | MB/s 12.5 | |
MoCA 1.0[25] | Mbit/s 100 | MB/s 12.5 | |
MoCA 1.1[25] | Mbit/s 175 | MB/s 21.875 | |
HomePlug AV | Mbit/s 200 | MB/s 25 | 2005 |
FireWire (IEEE 1394) 400[26][27] | Mbit/s 400 | MB/s 50 | 1995 |
HIPPI | Mbit/s 800 | MB/s 100 | |
IEEE 1901 | Mbit/s 1000 | MB/s 125 | 2010 |
Token Ring IEEE 802.5v | Gbit/s 1 | MB/s 125 | 2001 |
Gigabit Ethernet (1000BASE-X) | Gbit/s 1 | MB/s 125 | 1998 |
Reflective memory or RFM2 (1.25 µs latency) | Gbit/s 2 | MB/s 235 | 1970 |
Myrinet 2000 | Gbit/s 2 | MB/s 250 | |
Infiniband SDR 1×[28] | Gbit/s 2 | MB/s 250 | 2001 |
RapidIO Gen1 1x | Gbit/s 2.5 | MB/s 312.5 | 2000 |
Quadrics QsNetI | Gbit/s 3.6 | MB/s 450 | |
Infiniband DDR 1×[28] | Gbit/s 4 | MB/s 500 | 2005 |
RapidIO Gen2 1x | Gbit/s 5 | MB/s 625 | 2008 |
Infiniband QDR 1×[28] | Gbit/s 8 | GB/s 1 | 2007 |
Infiniband SDR 4×[28] | Gbit/s 8 | GB/s 1 | |
Quadrics QsNetII | Gbit/s 8 | GB/s 1 | |
RapidIO Gen1 4x | Gbit/s 10 | GB/s 1.25 | |
RapidIO Gen2 2x | Gbit/s 10 | GB/s 1.25 | 2008 |
10 Gigabit Ethernet (10GBASE-X) | Gbit/s 10 | GB/s 1.25 | 2002-2006 |
Myri 10G | Gbit/s 10 | GB/s 1.25 | |
Infiniband FDR-10 1×[29] | Gbit/s 10.31 | GB/s 1.29 | |
Infiniband FDR 1×[29] | Gbit/s 13.64 | GB/s 1.7 | 2011 |
Infiniband DDR 4×[28] | Gbit/s 16 | GB/s 2 | 2005 |
RapidIO Gen2 4x | Gbit/s 20 | GB/s 2.5 | 2008 |
Scalable Coherent Interface (SCI) Dual Channel SCI, x8 PCIe | Gbit/s 20 | GB/s 2.5 | |
Infiniband SDR 12×[28] | Gbit/s 24 | GB/s 3 | |
Infiniband EDR 1×[29] | Gbit/s 25 | GB/s 3.125 | 2014 |
Infiniband QDR 4×[28] | Gbit/s 32 | GB/s 4 | 2007 |
RapidIO Gen2 8x | Gbit/s 40 | GB/s 5 | 2008 |
40 Gigabit Ethernet (40GBASE-X) | Gbit/s 40 | GB/s 5 | 2010 |
Infiniband FDR-10 4×[29] | Gbit/s 41.25 | GB/s 5.16 | |
Infiniband DDR 12×[28] | Gbit/s 48 | GB/s 6 | 2005 |
Infiniband FDR 4×[29] | Gbit/s 54.54 | GB/s 6.82 | 2011 |
RapidIO Gen2 16x | Gbit/s 80 | GB/s 10 | 2008 |
Infiniband QDR 12×[28] | Gbit/s 96 | GB/s 12 | 2007 |
Infiniband EDR 4×[29] | Gbit/s 100 | GB/s 12.5 | 2014 |
100 Gigabit Ethernet (100GBASE-X) | Gbit/s 100 | GB/s 12.5 | 2010 |
Infiniband FDR-10 12×[29] | Gbit/s 123.75 | GB/s 15.47 | |
Infiniband FDR 12×[29] | Gbit/s 163.64 | GB/s 20.45 | 2011 |
Infiniband EDR 12×[29] | Gbit/s 300 | GB/s 37.5 | 2014 |
Wireless networks
802.11 networks in infrastructure mode are half-duplex; all stations share the medium. In infrastructure or access point mode, all traffic has to pass through an Access Point (AP). Thus, two stations on the same access point that are communicating with each other must have each and every frame transmitted twice: from the sender to the access point, then from the access point to the receiver. This approximately halves the effective bandwidth.
802.11 networks in ad hoc mode are still half-duplex, but devices communicate directly rather than through an access point. In this mode all devices must be able to "see" each other, instead of only having to be able to "see" the access point.
Standard | Rate | Year | |
---|---|---|---|
Classic WaveLAN | Mbit/s 2 | kB/s 250 | 1988 |
IEEE 802.11 | Mbit/s 2 | kB/s 250 | 1997 |
RONJA (full duplex) | Mbit/s 10 | MB/s 1.25 | 2001 |
IEEE 802.11a | Mbit/s 54 | MB/s 6.75 | 1999 |
IEEE 802.11b | Mbit/s 11 | MB/s 1.375 | 1999 |
IEEE 802.11g | Mbit/s 54 | MB/s 6.75 | 2003 |
IEEE 802.16 (WiMAX) | Mbit/s 70 | MB/s 8.75 | 2004 |
IEEE 802.11g with Super G by Atheros | Mbit/s 108 | MB/s 13.5 | 2003 |
IEEE 802.11g with 125 High Speed Mode by Broadcom | Mbit/s 125 | MB/s 15.625 | 2003 |
IEEE 802.11g with Nitro by Conexant | Mbit/s 140 | MB/s 17.5 | 2003 |
IEEE 802.11n | Mbit/s 600 | MB/s 75 | 2009 |
IEEE 802.11ac (maximum theoretical speed) | Gbit/s 6.8–6.93 | MB/s 850–866.25 | 2012 |
IEEE 802.11ad (maximum theoretical speed) | Gbit/s 7.14–7.2 | MB/s 892.5–900 | 2011 |
Wireless personal area networks
Technology | Rate | Year | |
---|---|---|---|
ANT | kbit/s 20 | kB/s 2.5 | |
IrDA-Control | kbit/s 72 | kB/s 9 | |
IrDA-SIR | kbit/s 115.2 | kB/s 14 | |
802.15.4 (2.4 GHz) | kbit/s 250 | kB/s 31.25 | |
Bluetooth 1.1 | Mbit/s 1 | kB/s 125 | 2002 |
Bluetooth 2.0+EDR | Mbit/s 3 | kB/s 375 | 2004 |
IrDA-FIR | Mbit/s 4 | kB/s 500 | |
IrDA-VFIR | Mbit/s 16 | MB/s 2 | |
Bluetooth 3.0 | Mbit/s 24 | MB/s 3 | 2009 |
Bluetooth 4.0 | Mbit/s 24 | MB/s 3 | 2010 |
IrDA-UFIR | Mbit/s 96 | MB/s 12 | |
WUSB-UWB | Mbit/s 480 | MB/s 60 | |
IrDA-Giga-IR | Mbit/s 1024 | MB/s 128 |
Computer buses
Main buses
Technology | Rate | Year | |
---|---|---|---|
I²C | Mbit/s 3.4 | kB/s 425 | 1992 (standardized) |
Apple II series (incl. Apple IIGS) 8-bit/1 MHz | Mbit/s 8 | MB/s 1[30][31] | |
SS-50 Bus 8-bit/1(?) MHz | Mbit/s 8 | MB/s 1 | |
STD-80 8-bit/8 MHz | Mbit/s 16 | MB/s 2 | |
ISA 8-Bit/4.77 MHz | Mbit/s 19.1 | MB/s 2.39 | 1981 (created) |
STD-80 16-bit/8 MHz | Mbit/s 32 | MB/s 4 | |
Zorro II 16-bit/7.14 MHz[32] | Mbit/s 42.4 | MB/s 5.3 | 1986 |
ISA 16-Bit/8.33 MHz | Mbit/s 66.7 | MB/s 8.33 | 1984 (created) |
Europe Card Bus 8-Bit/10 MHz | Mbit/s 66.7 | MB/s 8.33 | 1977 (created) |
S-100 bus 8-bit/10 MHz | Mbit/s 80 | MB/s 10 | 1976 (published) |
Serial Peripheral Interface Bus (Up to 100 MHz) | Mbit/s 100 | MB/s 12.5 | |
Low Pin Count | Mbit/s 125 | MB/s 15.63[x] | |
STEbus 8-Bit/16 MHz | Mbit/s 128 | MB/s 16 | 1987 (standardized) |
C-Bus 16-bit/10 MHz | Mbit/s 160 | MB/s 20[33] | |
HP Precision Bus | Mbit/s 184 | MB/s 23 | |
STD-32 32-bit/8 MHz | Mbit/s 256 | MB/s 32[34] | |
NESA 32-bit/8 MHz | Mbit/s 256 | MB/s 32[35] | |
EISA 8-16-32bit/8.33 MHz | Mbit/s 266.56 | MB/s 33.32 | 1988 |
VME64 32-64bit | Mbit/s 400 | MB/s 40 | |
NuBus 10 MHz | Mbit/s 400 | MB/s 40 | |
DEC TURBOchannel 32-bit/12.5 MHz | Mbit/s 400 | MB/s 50 | |
MCA 16-32bit/10 MHz | Mbit/s 660 | MB/s 66 | 1987 |
NuBus90 20 MHz | Mbit/s 800 | MB/s 80 | |
APbus 32-bit/25(?) MHz | Mbit/s 800 | MB/s 100[36] | |
Sbus 32-bit/25 MHz | Mbit/s 800 | MB/s 100 | 1989 |
DEC TURBOchannel 32-bit/25 MHz | Mbit/s 800 | MB/s 100 | |
Local Bus 98 32-bit/33 MHz | Mbit/s 1056 | MB/s 132[37] | |
VESA Local Bus (VLB) 32-bit/33 MHz | Mbit/s 1067 | MB/s 133.33 | 1992 |
PCI 32-bit/33 MHz | Mbit/s 1067 | MB/s 133.33 | 1993 |
HP GSC-1X | Mbit/s 1136 | MB/s 142 | |
Zorro III 32-bit/async (eq. 37.5 MHz)[38][39] | Mbit/s 1200 | MB/s 150[40] | 1990 |
VESA Local Bus (VLB) 32-bit/40 MHz | Mbit/s 1280 | MB/s 160 | 1992 |
Sbus 64-bit/25 MHz | Gbit/s 1.6 | MB/s 200 | |
PCI Express 1.0 (×1 link)[41] | Gbit/s 2.5 | MB/s 250[z] | 2004 |
HP GSC-2X | Gbit/s 2.048 | MB/s 256 | |
PCI 64-bit/33 MHz | Gbit/s 2.133 | MB/s 266.7 | 1993 |
PCI 32-bit/66 MHz | Gbit/s 2.133 | MB/s 266.7 | 1995 |
AGP 1× | Gbit/s 2.133 | MB/s 266.7 | 1997 |
RapidIO Gen1 1× | Gbit/s 2.5 | MB/s 312.5 | |
HIO bus | Gbit/s 2.560 | MB/s 320 | |
GIO64 64-bit/40 MHz | Gbit/s 2.560 | MB/s 320 | |
PCI Express 1.0 (×2 link)[41] | Gbit/s 5 | MB/s 500[z] | 2011 |
PCI Express 2.0 (×1 link)[42] | Gbit/s 5 | MB/s 500[z] | 2007 |
AGP 2× | Gbit/s 4.266 | MB/s 533.3 | 1997 |
PCI 64-bit/66 MHz | Gbit/s 4.266 | MB/s 533.3 | |
PCI-X DDR 16-bit | Gbit/s 4.266 | MB/s 533.3 | |
RapidIO Gen2 1× | Gbit/s 5 | MB/s 625 | |
PCI 64-bit/100 MHz | Gbit/s 6.4 | MB/s 800 | |
PCI Express 3.0 (×1 link)[43] | Gbit/s 8 | MB/s 984.6[y] | 2011 |
Unified Media Interface (UMI) (×4 link) | Gbit/s 10 | GB/s 1[z] | 2011 |
Direct Media Interface (DMI) (×4 link) | Gbit/s 10 | GB/s 1[z] | 2004 |
Enterprise Southbridge Interface (ESI) | Gbit/s 8 | GB/s 1 | |
PCI Express 1.0 (×4 link)[41] | Gbit/s 10 | GB/s 1[z] | 2004 |
AGP 4× | Gbit/s 8.533 | GB/s 1.067 | 1998 |
PCI-X 133 | Gbit/s 8.533 | GB/s 1.067 | |
PCI-X QDR 16-bit | Gbit/s 8.533 | GB/s 1.067 | |
InfiniBand single 4×[28] | Gbit/s 8 | GB/s 1 | |
RapidIO Gen1 4× | Gbit/s 10 | GB/s 1.25 | |
RapidIO Gen2 2× | Gbit/s 10 | GB/s 1.25 | |
UPA | Gbit/s 15.360 | GB/s 1.920 | |
Unified Media Interface 2.0 (UMI 2.0; ×4 link) | Gbit/s 20 | GB/s 2[z] | 2012 |
Direct Media Interface 2.0 (DMI 2.0; ×4 link) | Gbit/s 20 | GB/s 2[z] | 2011 |
PCI Express 1.0 (×8 link)[41] | Gbit/s 20 | GB/s 2[z] | 2004 |
PCI Express 2.0 (×4 link)[42] | Gbit/s 20 | GB/s 2[z] | 2007 |
AGP 8× | Gbit/s 17.066 | GB/s 2.133 | 2002 |
PCI-X DDR | Gbit/s 17.066 | GB/s 2.133 | |
RapidIO Gen2 4× | Gbit/s 20 | GB/s 2.5 | |
Sun JBus (200 MHz) | Gbit/s 20.48 | GB/s 2.56 | 2003 |
HyperTransport (800 MHz, 16-pair) | Gbit/s 25.6 | GB/s 3.2 | 2001 |
PCI Express 3.0 (×4 link)[43] | Gbit/s 32 | GB/s 3.938[y] | 2011 |
HyperTransport (1 GHz, 16-pair) | Gbit/s 32 | GB/s 4 | |
PCI Express 1.0 (×16 link)[41] | Gbit/s 40 | GB/s 4[z] | 2004 |
PCI Express 2.0 (×8 link)[42] | Gbit/s 40 | GB/s 4[z] | 2007 |
PCI-X QDR | Gbit/s 34.133 | GB/s 4.266 | |
AGP 8× 64-bit | Gbit/s 34.133 | GB/s 4.266 | |
RapidIO Gen2 8x | Gbit/s 40 | GB/s 5 | |
PCI Express 3.0 (×8 link)[43] | Gbit/s 64 | GB/s 7.877[y] | 2011 |
PCI Express 1.0 (×32 link)[41] | Gbit/s 80 | GB/s 8[z] | 2001 |
PCI Express 2.0 (×16 link)[42] | Gbit/s 80 | GB/s 8[z] | 2007 |
RapidIO Gen2 16x | Gbit/s 80 | GB/s 10 | |
PCI Express 3.0 (×16 link)[43] | Gbit/s 128 | GB/s 15.75[y] | 2011 |
PCI Express 2.0 (×32 link)[42] | Gbit/s 160 | GB/s 16[z] | 2007 |
QPI (4.80GT/s, 2.40 GHz) | Gbit/s 153.6 | GB/s 19.2 | |
HyperTransport 2.0 (1.4 GHz, 32-pair) | Gbit/s 179.2 | GB/s 22.4 | 2004 |
QPI (5.86GT/s, 2.93 GHz) | Gbit/s 187.52 | GB/s 23.44 | |
QPI (6.40GT/s, 3.20 GHz) | Gbit/s 204.8 | GB/s 25.6 | |
QPI (7.2GT/s, 3.6 GHz) | Gbit/s 230.4 | GB/s 28.8 | 2012 |
PCI Express 3.0 (×32 link)[43] | Gbit/s 256 | GB/s 31.51[y] | 2011 |
QPI (8.0GT/s, 4.0 GHz) | Gbit/s 256.0 | GB/s 32.0 | 2012 |
QPI (9.6GT/s, 4.8 GHz) | Gbit/s 307.2 | GB/s 38.4 | 2014 |
HyperTransport 3.0 (2.6 GHz, 32-pair) | Gbit/s 332.8 | GB/s 41.6 | 2006 |
HyperTransport 3.1 (3.2 GHz, 32-pair) | Gbit/s 409.6 | GB/s 51.2 | 2008 |
x LPC protocol includes high overhead. While the gross data rate equals 33.3 million 4-bit-transfers per second (or MB/s), the fastest transfer, firmware read, results in 16.67 MB/s. The next fastest bus cycle, 32-bit ISA-style DMA write, yields only 15.63 MB/s. Other transfers may be as low as 6.67 MB/s. 2[44]
y Uses 128b/130b encoding, meaning that about 1.54% of each transfer is used by the interface instead of carrying data between the hardware components at each end of the interface. For example, a single link PCIe 3.0 interface has an 8 Gbit/s transfer rate, yet its usable bandwidth is only about 7.88 Gbit/s.
z Uses 8b/10b encoding, meaning that 20% of each transfer is used by the interface instead of carrying data from between the hardware components at each end of the interface. For example, a single link PCIe 1.0 has a 2.5 Gbit/s transfer rate, yet its usable bandwidth is only 2 Gbit/s (250 MB/s).
Portable
Technology | Rate | Year | |
---|---|---|---|
PC Card 16-bit 255 ns byte mode | Mbit/s 31.36 | MB/s 3.92 | |
PC Card 16-bit 255 ns word mode | Mbit/s 62.72 | MB/s 7.84 | |
PC Card 16-bit 100 ns byte mode | Mbit/s 80 | MB/s 10 | |
PC Card 16-bit 100 ns word mode | Mbit/s 160 | MB/s 20 | |
PC Card 32-bit (CardBus) byte mode | Mbit/s 267 | MB/s 33.33 | |
ExpressCard 1.2 USB 2.0 mode | Mbit/s 480 | MB/s 60 | |
PC Card 32-bit (CardBus) word mode | Mbit/s 533 | MB/s 66.66 | |
PC Card 32-bit (CardBus) doubleword mode | Mbit/s 1067 | MB/s 133.33 | |
ExpressCard 1.2 PCI Express mode | Mbit/s 2500 | MB/s 250 | |
ExpressCard 2.0 USB 3.0 mode | Mbit/s 4800 | MB/s 600 | |
ExpressCard 2.0 PCI Express mode | Mbit/s 5000 | MB/s 625 |
Storage
Technology | Rate | Year | |
---|---|---|---|
Teletype Model 33 paper tape (70 bit/s, 10 ASCII characters per second) | 070 Mbit/s 0.000 | 010 MB/s 0.000 | 1963 |
TRS-80 Model 1 Level 1 BASIC cassette tape interface (250 bit/s ) | 25 Mbit/s 0.000 | 032 MB/s 0.000 | 1977 |
Apple 2 cassette tape interface (1500 bit/s) | Mbit/s 0.0015 | MB/s 0.0002 | 1977 |
Single Density 8-inch FM Floppy Disk Controller (160 KB) | Mbit/s 0.250 | MB/s 0.031 | 1973 |
Double Density 5.25-inch MFM Floppy Disk Controller (360 KB) | Mbit/s 0.500 | MB/s 0.062 | 1978 |
High Density MFM Floppy Disk Controller (1.2 MB/1.44 MB) | Mbit/s 1.0 | MB/s 0.124 | 1984 |
CD Controller (1×) | Mbit/s 1.171 | MB/s 0.146 | |
MFM hard disk | Mbit/s 5 | MB/s 0.625 | 1980 |
RLL hard disk | Mbit/s 7.5 | MB/s 0.937 | |
DVD Controller (1×) | Mbit/s 11.1 | MB/s 1.32 | |
ESDI | Mbit/s 24 | MB/s 3 | |
ATA PIO Mode 0 | Mbit/s 26.4 | MB/s 3.3 | 1986 |
HD DVD Controller (1×) | Mbit/s 36 | MB/s 4.5 | |
Blu-ray Controller (1×) | Mbit/s 36 | MB/s 4.5 | |
SCSI (Narrow SCSI) (5 MHz)[45] | Mbit/s 40 | MB/s 5 | 1986 |
ATA PIO Mode 1 | Mbit/s 41.6 | MB/s 5.2 | 1994 |
ATA PIO Mode 2 | Mbit/s 66.4 | MB/s 8.3 | 1994 |
Fast SCSI (8 bits/10 MHz) | Mbit/s 80 | MB/s 10 | |
ATA PIO Mode 3 | Mbit/s 88.8 | MB/s 11.1 | 1996 |
AoE over Fast Ethernet[46] | Mbit/s 100 | MB/s 11.9 | 2009 |
iSCSI over Fast Ethernet[47] | Mbit/s 100 | MB/s 11.9 | 2004 |
ATA PIO Mode 4 | Mbit/s 133.3 | MB/s 16.7 | 1996 |
Fast Wide SCSI (16 bits/10 MHz) | Mbit/s 160 | MB/s 20 | |
Ultra SCSI (Fast-20 SCSI) (8 bits/20 MHz) | Mbit/s 160 | MB/s 20 | |
Ultra DMA ATA 33 | Mbit/s 264 | MB/s 33 | 1998 |
Ultra Wide SCSI (16 bits/20 MHz) | Mbit/s 320 | MB/s 40 | |
Ultra-2 SCSI 40 (Fast-40 SCSI) (8 bits/40 MHz) | Mbit/s 320 | MB/s 40 | |
Ultra DMA ATA 66 | Mbit/s 533.6 | MB/s 66.7 | 2000 |
Blu-ray Controller (16×) | Mbit/s 576 | MB/s 72 | |
Ultra-2 wide SCSI (16 bits/40 MHz) | Mbit/s 640 | MB/s 80 | |
Serial Storage Architecture SSA | Mbit/s 640 | MB/s 80 | 1990 |
Ultra DMA ATA 100 | Mbit/s 800 | MB/s 100 | 2002 |
Fibre Channel 1GFC (1.0625 GHz)[48] | Mbit/s 850 | MB/s 103.23 | 1997 |
AoE over gigabit Ethernet, jumbo frames[49] | Mbit/s 1000 | MB/s 124.2 | 2009 |
iSCSI over gigabit Ethernet, jumbo frames[50] | Mbit/s 1000 | MB/s 123.9 | 2004 |
Ultra DMA ATA 133 | Mbit/s 1064 | MB/s 133 | 2005 |
Ultra-3 SCSI (Ultra 160 SCSI; Fast-80 Wide SCSI) (16 bits/40 MHz DDR) | Mbit/s 1280 | MB/s 160 | |
SATA revision 1.0[51] | Mbit/s 1500 | MB/s 150[a] | 2003 |
Fibre Channel 2GFC (2.125 GHz)[48] | Mbit/s 1700 | MB/s 206.5 | 2001 |
Ultra-320 SCSI (Ultra4 SCSI) (16 bits/80 MHz DDR) | Mbit/s 2560 | MB/s 320 | |
Serial Attached SCSI (SAS)[51] | Mbit/s 3000 | MB/s 300[a] | 2004 |
SATA Revision 2.0[51] | Mbit/s 3000 | MB/s 300[a] | 2004 |
Fibre Channel 4GFC (4.25 GHz)[48] | Mbit/s 3400 | MB/s 413 | 2004 |
Serial Attached SCSI (SAS) 2[51] | Mbit/s 6000 | MB/s 600[a] | 2009 |
SATA Revision 3.0[51] | Mbit/s 6000 | MB/s 600[a] | 2008 |
Fibre Channel 8GFC (8.50 GHz)[48] | Mbit/s 6800 | MB/s 826 | 2005 |
Fibre Channel 16GFC (14.025 GHz)[48] | 600 Mbit/s 13 | MB/s 1652[b] | 2011 |
Serial Attached SCSI (SAS) 3[51] | 000 Mbit/s 12 | MB/s 1200 | 2013 |
AoE over 10GbE[49] | 000 Mbit/s 10 | MB/s 1242 | 2009 |
iSCSI over 10GbE[50] | 000 Mbit/s 10 | MB/s 1239 | 2004 |
FCoE over 10GbE[52] | 000 Mbit/s 10 | MB/s 1206 | 2009 |
SATA revision 3.2 - SATA Express | 000 Mbit/s 16 | MB/s 2000 | 2013 |
Serial Attached SCSI (SAS) 4 (preliminary specification)[53] | 500 Mbit/s 22 | MB/s 2400 | tba |
NVMe over M.2 or U.2 (using PCI Express 3.0 ×4 link)[43] | 000 Mbit/s 32 | MB/s 3938 | 2013 |
iSCSI over InfiniBand 4× | 000 Mbit/s 32 | MB/s 4000 | 2007 |
iSCSI over 100G Ethernet[50] | 000 Mbit/s 100 | 392 MB/s 12 | 2010 |
FCoE over 100G Ethernet[52] | 000 Mbit/s 100 | 064 MB/s 12 | 2010 |
a Uses 8b/10b encoding b Uses 64b/66b encoding
Peripheral
Technology | Rate | Year | |
---|---|---|---|
Apple Desktop Bus | kbit/s 10.0 | kB/s 1.25 | 1986 |
Serial MIDI | kbit/s 31.25 | kB/s 3.9 | 1983 |
CBM Bus max[54][55] | kbit/s 41.6 | kB/s 5.1 | 1981 |
Serial EIA-232 max | kbit/s 230.4 | kB/s 28.8 | 1962 |
Serial DMX512A | kbit/s 250.0 | kB/s 31.25 | 1998 |
Parallel (Centronics) | Mbit/s 1 | kB/s 125 | 1970 (standardised 1994) |
Serial 16550 UART max | Mbit/s 1.5 | kB/s 187.5 | |
USB low speed | Mbit/s 1.536 | kB/s 192 | 1996 |
Serial UART max | Mbit/s 2.7648 | kB/s 345.6 | |
GPIB/HPIB (IEEE-488.1) IEEE-488 max. | Mbit/s 8 | MB/s 1 | Late 1960s (standardised 1976) |
Serial EIA-422 max. | Mbit/s 10 | MB/s 1.25 | |
USB full speed | Mbit/s 12 | MB/s 1.5 | 1996 |
Parallel (Centronics) EPP 2 MHz | Mbit/s 16 | MB/s 2 | 1992 |
Serial EIA-485 max. | Mbit/s 35 | MB/s 4.375 | |
GPIB/HPIB (IEEE-488.1-2003) IEEE-488 max. | Mbit/s 64 | MB/s 8 | |
FireWire (IEEE 1394) 100 | Mbit/s 98.304 | MB/s 12.288 | 1995 |
FireWire (IEEE 1394) 200 | Mbit/s 196.608 | MB/s 24.576 | 1995 |
FireWire (IEEE 1394) 400 | Mbit/s 393.216 | MB/s 49.152 | 1995 |
USB high speed | Mbit/s 480 | MB/s 60 | 2000 |
FireWire (IEEE 1394b) 800[56] | Mbit/s 786.432 | MB/s 98.304 | 2002 |
Fibre Channel 1 Gb SCSI | 062.5 Mbit/s 1 | MB/s 100 | |
FireWire (IEEE 1394b) 1600[56] | Gbit/s 1.573 | MB/s 196.6 | 2007 |
Fibre Channel 2 Gb SCSI | Mbit/s 2125 | MB/s 200 | |
eSATA (SATA 300) | Gbit/s 3 | MB/s 375 | 2004 |
CoaXPress Base (up and down bidirectional link) | Gbit/s + 3.125 Mbit/s 20.833 | MB/s 390 | 2009 |
FireWire (IEEE 1394b) 3200[56] | 145.7 Mbit/s 3 | MB/s 393.216 | 2007 |
External PCI Express 2.0 ×1 | Gbit/s 4 | MB/s 500 | |
Fibre Channel 4 Gb SCSI | Gbit/s 4.25 | MB/s 531.25 | |
USB SuperSpeed | Gbit/s 5 | MB/s 625 | 2010 |
eSATA (SATA 600) | Gbit/s 6 | MB/s 750 | 2011 |
CoaXPress full (up and down bidirectional link) | Gbit/s + 6.25 Mbit/s 20.833 | MB/s 781 | 2009 |
External PCI Express 2.0 ×2 | Gbit/s 8 | MB/s 1000 | |
USB SuperSpeed+ | Gbit/s 10 | MB/s 1250 | 2013 |
Thunderbolt | 2 × Gbit/s 10 | 2 × MB/s 1250 | 2011 |
External PCI Express 2.0 ×4 | Gbit/s 16 | MB/s 2000 | |
Thunderbolt 2 | Gbit/s 20 | MB/s 2500 | 2013 |
External PCI Express 2.0 ×8 | Gbit/s 32 | MB/s 4000 | |
Thunderbolt 3 | Gbit/s 40 | MB/s 5000 | 2015 |
External PCI Express 2.0 ×16 | Gbit/s 64 | MB/s 8000 |
MAC to PHY
Technology | Rate | Year | |
---|---|---|---|
Media Independent Interface (MII; 4 lanes) | Mbit/s 100 | MB/s 12.5 | |
Reduced MII (RMII; 2 lanes) | Mbit/s 100 | MB/s 12.5 | |
Serial MII (SMII; 1 lane) | Mbit/s 100 | MB/s 12.5 | |
Gigabit MII (GMII; 8 lanes) | Gbit/s 1.0 | MB/s 125 | |
Reduced gigabit/s MII (RGMII; 4 lanes) | Gbit/s 1.0 | MB/s 125 | |
Serial gigabit/s MII (SGMII; 2 lanes) | Gbit/s 1.25 | MB/s 125 | |
Reduced serial gigabit/s MII (RSGMII; 2 lanes) | Gbit/s 2.5 | MB/s 250 | |
Reduced serial gigabit/s MII plus (RSGMII-PLUS; 2 lanes) | Gbit/s 5.0 | MB/s 500 | |
Quad serial gigabit/s MII (QSGMII; 2 lanes) | Gbit/s 5.0 | MB/s 500 | |
10 gigabit/s MII (XGMII; 32 lanes) | Gbit/s 10.0 | GB/s 1.25 | |
XGMII attachment unit interface (XAUI; 4 lanes) | Gbit/s 10.0 | GB/s 1.25 | |
40 gigabit/s MII (XLGMII) | Gbit/s 40.0 | GB/s 5 | |
100 gigabit/s MII (CGMII) | Gbit/s 100.0 | GB/s 12.5 | 2008 |
PHY to XPDR
Technology | Rate | Year | |
---|---|---|---|
10 gigabit/s 16-bit interface (XSBI; 16 lanes) | Gbit/s 0.995 | GB/s 0.124 |
Dynamic random-access memory
The table below shows values for PC memory module types. These modules usually combine multiple chips on one circuit board. SIMM modules connect to the computer via an 8 bit or 32 bit wide interface. DIMM modules connect to the computer via a 64 bit wide interface. Some other computer architectures use different modules with a different bus width.
FPM, EDO, SDR, and RDRAM memories were not commonly installed in a dual-channel configuration. DDR and DDR2 memory are usually installed in single or dual-channel configuration. DDR3 memory are installed in single, dual, tri, and quad-channel configurations. Bit rates of multi-channel configuration are slightly increased.
Module type | Chip type | Memory clock | Bus speed | Transfer rate | |
---|---|---|---|---|---|
FPM DRAM | 45 ns | MHz 22 | GT/s 0.177 | Gbit/s 1.416 | MB/s 177 |
EDO DRAM | 30 ns | MHz 33 | GT/s 0.266 | Gbit/s 2.128 | MB/s 266 |
PC-66 SDR SDRAM | 10/15 ns | MHz 66 | GT/s 0.066 | Gbit/s 4.264 | MB/s 533 |
PC-100 SDR SDRAM | 8 ns | MHz 100 | GT/s 0.100 | Gbit/s 6.4 | MB/s 800 |
PC-133 SDR SDRAM | 7/7.5 ns | MHz 133 | GT/s 0.133 | Gbit/s 8.528 | GB/s 1.066 |
RIMM-1200 RDRAM | PC-600 | MHz 300 | GT/s 0.600 | Gbit/s 9.6 | GB/s 1.2 |
RIMM-1400 RDRAM | PC-700 | MHz 350 | GT/s 0.700 | Gbit/s 11.2 | GB/s 1.4 |
RIMM-1600 RDRAM | PC-800 | MHz 400 | GT/s 0.800 | Gbit/s 12.8 | GB/s 1.6 |
PC-1600 DDR SDRAM | DDR-200 | MHz 100 | GT/s 0.200 | Gbit/s 12.8 | GB/s 1.6 |
RIMM-2100 RDRAM | PC-1066 | MHz 533 | GT/s 1.066 | Gbit/s 17.034 | GB/s 2.133 |
PC-2100 DDR SDRAM | DDR-266 | MHz 133 | GT/s 0.266 | Gbit/s 17.034 | GB/s 2.133 |
PC-2700 DDR SDRAM | DDR-333 | MHz 166 | GT/s 0.333 | Gbit/s 21.336 | GB/s 2.667 |
PC-3200 DDR SDRAM | DDR-400 | MHz 200 | GT/s 0.400 | Gbit/s 25.6 | GB/s 3.2 |
PC2-3200 DDR2 SDRAM | DDR2-400 | MHz 100 | GT/s 0.400 | Gbit/s 25.6 | GB/s 3.2 |
PC-3500 DDR SDRAM | DDR-433 | MHz 216 | GT/s 0.433 | Gbit/s 27.728 | GB/s 3.466 |
PC-3700 DDR SDRAM | DDR-466 | MHz 233 | GT/s 0.466 | Gbit/s 29.864 | GB/s 3.733 |
PC-4000 DDR SDRAM | DDR-500 | MHz 250 | GT/s 0.500 | Gbit/s 32 | GB/s 4 |
PC-4200 DDR SDRAM | DDR-533 | MHz 266 | GT/s 0.533 | Gbit/s 34.128 | GB/s 4.266 |
PC2-4200 DDR2 SDRAM | DDR2-533 | MHz 133 | GT/s 0.533 | Gbit/s 34.128 | GB/s 4.266 |
PC-4400 DDR SDRAM | DDR-550 | MHz 275 | GT/s 0.550 | Gbit/s 35.2 | GB/s 4.4 |
PC-4800 DDR SDRAM | DDR-600 | MHz 300 | GT/s 0.600 | Gbit/s 38.4 | GB/s 4.8 |
PC2-5300 DDR2 SDRAM | DDR2-667 | MHz 167 | GT/s 0.667 | Gbit/s 42.664 | GB/s 5.333 |
PC2-6000 DDR2 SDRAM | DDR2-750 | MHz 188 | GT/s 0.750 | Gbit/s 48 | GB/s 6 |
PC2-6400 DDR2 SDRAM | DDR2-800 | MHz 200 | GT/s 0.800 | Gbit/s 51.2 | GB/s 6.4 |
PC3-6400 DDR3 SDRAM | DDR3-800 | MHz 100 | GT/s 0.800 | Gbit/s 51.2 | GB/s 6.4 |
PC2-7200 DDR2 SDRAM | DDR2-900 | MHz 225 | GT/s 0.900 | Gbit/s 57.6 | GB/s 7.2 |
PC2-8000 DDR2 SDRAM | DDR2-1000 | MHz 250 | GT/s 1 | Gbit/s 64 | GB/s 8 |
PC2-8500 DDR2 SDRAM | DDR2-1066 | MHz 267 | GT/s 1.066 | Gbit/s 68 | GB/s 8.5 |
PC3-8500 DDR3 SDRAM | DDR3-1066 | MHz 133 | GT/s 1.066 | Gbit/s 68 | GB/s 8.5 |
PC2-8800 DDR2 SDRAM | DDR2-1100 | MHz 275 | GT/s 1.1 | Gbit/s 70.4 | GB/s 8.8 |
PC2-8888 DDR2 SDRAM | DDR2-1100 | MHz 278 | GT/s 1.111 | Gbit/s 71.104 | GB/s 8.888 |
PC2-9136 DDR2 SDRAM | DDR2-1142 | MHz 286 | GT/s 1.142 | Gbit/s 73.088 | GB/s 9.136 |
PC2-9200 DDR2 SDRAM | DDR2-1150 | MHz 288 | GT/s 1.15 | Gbit/s 73.6 | GB/s 9.2 |
PC2-9600 DDR2 SDRAM | DDR2-1200 | MHz 300 | GT/s 1.2 | Gbit/s 76.8 | GB/s 9.6 |
PC2-10000 DDR2 SDRAM | DDR2-1250 | MHz 313 | GT/s 1.25 | Gbit/s 80 | GB/s 10 |
PC3-10600 DDR3 SDRAM | DDR3-1333 | MHz 167 | GT/s 1.333 | Gbit/s 85.336 | GB/s 10.667 |
PC3-11000 DDR3 SDRAM | DDR3-1375 | MHz 172 | GT/s 1.375 | Gbit/s 88 | GB/s 11 |
PC3-12800 DDR3 SDRAM | DDR3-1600 | MHz 200 | GT/s 1.6 | Gbit/s 102.4 | GB/s 12.8 |
PC3-13000 DDR3 SDRAM | DDR3-1625 | MHz 203 | GT/s 1.625 | Gbit/s 104 | GB/s 13 |
PC3-14400 DDR3 SDRAM | DDR3-1800 | MHz 225 | GT/s 1.8 | Gbit/s 115.2 | GB/s 14.4 |
PC3-14900 DDR3 SDRAM | DDR3-1866 | MHz 233 | GT/s 1.866 | Gbit/s 119.464 | GB/s 14.933 |
PC3-15000 DDR3 SDRAM | DDR3-1866 | MHz 233 | GT/s 1.866 | Gbit/s 119.464 | GB/s 14.933 |
PC3-16000 DDR3 SDRAM | DDR3-2000 | MHz 250 | GT/s 2 | Gbit/s 128 | GB/s 16 |
PC3-17000 DDR3 SDRAM | DDR3-2133 | MHz 266 | GT/s 2.133 | Gbit/s 136.528 | GB/s 17.066 |
PC4-17000 DDR4 SDRAM | DDR4-2133 | MHz 266 | GT/s 2.133 | Gbit/s 136.5 | GB/s 17[57] |
PC3-17600 DDR3 SDRAM | DDR3-2200 | MHz 275 | GT/s 2.2 | Gbit/s 140.8 | GB/s 17.6 |
PC3-19200 DDR3 SDRAM | DDR3-2400 | MHz 300 | GT/s 2.4 | Gbit/s 153.6 | GB/s 19.2 |
PC3-21300 DDR3 SDRAM | DDR3-2666 | MHz 333 | GT/s 2.666 | Gbit/s 170.4 | GB/s 21.3 |
PC3-24000 DDR3 SDRAM | DDR3-3000 | MHz 375 | GT/s 3.0 | Gbit/s 192 | GB/s 24 |
PC4-25600 DDR4 SDRAM | DDR4-3200 | MHz 400 | GT/s 3.2 | Gbit/s 204.8 | GB/s 25.6 |
Graphics processing units' RAM
RAM memory modules are also utilised by graphics processing units; however, memory modules for those differs somewhat, particularly with lower power requirements, and is specialised to serve GPUs: for example, the introduction of GDDR3, which was fundamentally based on DDR2. Every graphics memory chip is directly connected to the GPU (point-to-point). The total GPU memory bus width varies with the number of memory chips and the number of lanes per chip. For example, GDDR5 specifies either 16 or 32 lanes per "device" (chip). Over the years, bus widths ranged from 64-bit to 512-bit.[58] Because of this variability, graphics memory speeds are sometimes compared per pin. For direct comparison to the values for 64-bit modules shown above, video RAM is compared here in 64-lane lots, corresponding to two chips. In 2012, high-end GPUs use 8 or even 12 chips with 32 lanes each, for a total memory bus width of 256 or 384 bits. Combined with a transfer rate per pin of 5 GT/s or more, such cards can reach 240 GB/s or more.
RAM frequencies vary greatly. The values given below are examples for high-end cards.[59] Since many cards have more than one pair of chips, the total bandwidth is correspondingly higher. For example, high-end cards often have eight chips, so that the total bandwidth is four times the value given below.
Module type | Chip type | Memory clock | Transfers/s | Transfer rate | |
---|---|---|---|---|---|
64 lanes | DDR | MHz 350 | GT/s 0.7 | Gbit/s 44.8 | GB/s 5.6 |
64 lanes | DDR2 | MHz 250 | GT/s 1 | Gbit/s 64 | GB/s 8 |
64 lanes | GDDR3 | MHz 625 | GT/s 2.5 | Gbit/s 159 | GB/s 19.9 |
64 lanes | GDDR4 | MHz 275 | GT/s 2.2 | Gbit/s 140.8 | GB/s 17.6 |
64 lanes | GDDR5 | MHz 750 | GT/s 6 | Gbit/s 384 | GB/s 48 |
8 channels @ 128 bit | HBM | MHz 1000 | GT/s 2 | Gbit/s 2048 | GB/s 256 |
Digital audio
Device | Rate | |
---|---|---|
CD Audio (16-bit PCM) | Mbit/s 1.411 | kB/s 176.4 |
I²S | Mbit/s @ 24bit/48 2.250 kHz | MB/s 0.281 |
AES/EBU | Mbit/s @ 24-bit/48 2.625 kHz | MB/s 0.328 |
S/PDIF | Mbit/s 3.072 | MB/s 0.384 |
ADAT Lightpipe (Type I) | Mbit/s 9.216 | MB/s 2.304 |
AC'97 | Mbit/s 12.288 | MB/s 1.536 |
HDMI | Mbit/s 36.864 | MB/s 4.608 |
DisplayPort | Mbit/s 36.864 | MB/s 4.608 |
Intel High Definition Audio rev. 1.0[60] | Mbit/s outbound; 24 Mbit/s inbound 48 | MB/s outbound; 3 MB/s inbound 6 |
MADI | Mbit/s 100 | MB/s 12.5 |
Digital video interconnects
Data rates given are from the video source (e.g., video card) to receiving device (e.g., monitor) only. Out of band and reverse signaling channels are not included.
Device | Rate | ||
---|---|---|---|
HD-SDI (SMPTE 292M) | Gbit/s 1.485 | GB/s 0.186 | |
Camera Link Base (single) 24-bit 85 MHz | Gbit/s 2.040 | GB/s 0.255 | |
LVDS Display Interface[61] | Gbit/s 2.80 | GB/s 0.35 | |
3G-SDI (SMPTE 424M) | Gbit/s 2.97 | GB/s 0.371 | |
Single link DVI | Gbit/s 4.95 | GB/s 0.619[a] | |
HDMI 1.0[62] | Gbit/s 4.95 | GB/s 0.619[a] | |
Camera Link full (dual) 64-bit 85 MHz | Gbit/s 5.44 | GB/s 0.680 | |
DisplayPort 1.0 (4-lane Reduced Bit Rate)[63] | Gbit/s 6.48 | GB/s 0.810[a] | |
Dual link DVI | Gbit/s 9.90 | GB/s 1.238[a] | |
Thunderbolt | 2 × Gbit/s 10 | 2 × MB/s 1250 | 2011 |
HDMI 1.3[64] | Gbit/s 10.2 | GB/s 1.275[a] | |
Dual High-Speed LVDS Display Interface | Gbit/s 10.5 | GB/s 1.312 | |
DisplayPort 1.0 (4-lane High Bit Rate)[63] | Gbit/s 10.8 | GB/s 1.35[a] | |
HDMI 2.0[65] | Gbit/s 18.0 | GB/s 2.25[a] | |
Thunderbolt 2 | Gbit/s 20 | MB/s 2500 | 2013 |
DisplayPort 1.2 (4-lane High Bit Rate 2)[63] | Gbit/s 21.6 | GB/s 2.7[a] | |
DisplayPort 1.3 (4-lane High Bit Rate 3) | Gbit/s 32.4 | GB/s 4.05[a] | |
Thunderbolt 3 | Gbit/s 40 | MB/s 5000 | 2015 |
a Uses 8b/10b encoding for video data—effective data rate is 80% of the symbol rate
See also
- Bitrate (including Bitrates in multimedia)
- Comparison of mobile phone standards
- Comparison of wireless data standards
- List of Internet access technology bit rates in the Digital bandwidth article
- OFDM system comparison table
- Sneakernet
- Spectral efficiency comparison table
- Orders of magnitude (bit rate)
Notes
- ↑ http://www.nist.gov/pml/div688/grp40/upload/NIST-Enhanced-WWVB-Broadcast-Format-sept-2012-Radio-Station-staff.pdf
- ↑ http://tf.nist.gov/timefreq/general/pdf/2422.pdf
- ↑ TTY uses a Baudot code, not ASCII. This uses 5 bits per character instead of 8, plus one start and approx. 1.5 stop bits (7.5 total bits per character sent).
- ↑ Morse can transport 26 alphabetic, 10 numeric and one interword gap plaintext symbols. Transmitting 37 different symbols requires 5.21 bits of information (25.21=37). A skilled operator encoding the benchmark "PARIS" plus an interword gap (equal to 31.26 bits) at 40 wpm is operating at an equivalence of 20.84 bit/s.
- ↑ WPM, or Words Per Minute, is the number of times the word "PARIS" is transferred per minute. Strictly speaking the code is quinary, accounting inter-element, inter-letter, and inter-word gaps, yielding 50 binary elements (bits) per one word. Counting characters, including inter-word gaps, gives six characters per word or 240 characters per minute, and finally four characters per second.
- 1 2 3 4 5 6 7 8 9 10 All modems are wrongly assumed to be in serial operation with 1 start bit, 8 data bits, no parity, and 1 stop bit (2 stop bits for 110-baud modems). Therefore, currently modems are wrongly calculated with transmission of 10 bits per 8-bit byte (11 bits for 110-baud modems). Although the serial port is nearly always used to connect a modem and has equivalent data rates, the protocols, modulations and error correction differ completely.
- 1 2 3 Modem Types and Timeline, Daxal Communications, 2003-12-16, retrieved 2009-04-16
- 1 2 3 4 5 6 |title="ITU.int"ITU.int
- 1 2 3 56K modems: V.90 and V.92 have just 5% overhead for the protocol signalling. The maximum capacity can only be achieved when the upstream (service provider) end of the connection is digital, i.e. a DS0 channel.
- ↑ Note that effective aggregate bandwidth for an ISDN installation is typically higher than the rates shown for a single channel due to the use of multiple channels. A basic rate interface (BRI) provides two "B" channels and one "D" channel. Each B channel provides 64 kBit/s bandwidth and the "D" channel carries signaling (call setup) information. B channels can be bonded to provide a 128 kbit/s data rate. Primary rate interfaces (PRI) vary depending on whether the region uses E1 (Europe, world) or T1 (North America) bearers. In E1 regions, the PRI carries 30 B-channels and one D-channel; in T1 regions the PRI carries 23 B-channels and one D-channel. The D-channel has different bandwidth on the two interfaces.
- ↑ Massey, David (2006-07-04), "Timeline of Telecommunications", Telephone Tribute, retrieved 2009-04-16
- ↑ Adam.com.au
- ↑ Itu.int
- 1 2 DOCSIS 1.0 includes technology which first became available around 1995–1996, and has since become very widely deployed. DOCSIS 1.1 introduces some security improvements and Quality of Service (QoS).
- 1 2 DOCSIS 2.0 specifications provide increased upstream throughput for symmetric services.
- 1 2 DOCSIS 3.0 includes support for channel bonding and IPv6.
- ↑ ITU.int
- ↑ DOCSIS 3.1 is currently in development by the Cablelabs Consortium
- ↑ ITU.int
- ↑
- ↑ Most operators only support up to 9600bit/s
- ↑ SDSL is available in various speeds.
- ↑ ADSL connections will vary in throughput from 64 kbit/s to several Mbit/s depending on configuration. Most are commonly below 2 Mbit/s. Some ADSL and SDSL connections have a higher digital bandwidth than T1 but their rate is not guaranteed, and will drop when the system gets overloaded, whereas the T1 type connections are usually guaranteed and have no contention ratios.
- ↑ Satellite internet may have a high bandwidth but also has a high latency due to the distance between the modem, satellite and hub. One-way satellite connections exist where all the downstream traffic is handled by satellite and the upstream traffic by land-based connections such as 56K modems and ISDN.
- 1 2 "MoCA 1.1 improves throughput" over coaxial cable to 175 Mbits/s versus the 100 Mbits/s provided by the MoCA 1.0 specification.
- ↑ FireWire natively supports TCP/IP, and is often used at an alternative to Ethernet when connecting 2 nodes. Tweaktown.com
- ↑ Data rate comparison between FW and Giganet shows that FW's lower overhead has nearly the same throughput as Giganet. Unibrain.com
- 1 2 3 4 5 6 7 8 9 10 InfiniBand SDR, DDR and QDR use an 8b/10b encoding scheme.
- 1 2 3 4 5 6 7 8 9 InfiniBand FDR-10, FDR and EDR use a 64b/66b encoding scheme.
- ↑ Mac History
- ↑ VAW: Apple IIgs Specs
- ↑ The Zorro II bus use 4 clocks per 16-Bit of data transferred. See the Zorro III technical specification for more information.
- ↑ Japan wikipedia article, Bus used in early NEC PC-9800 series and compatible systems
- ↑ STD 32 Bus Specification and Designer's Guide
- ↑ Japan wikipedia article, Bus used in later NEC PC-9800 series and compatible systems
- ↑ Local Area Networks Newsletter by Paul Polishuk, September 1992, Page 7 (APbus used in Sony NeWS and NEC UP4800 workstations and NEC EWS4800 servers after VMEbus and before switch to PCI)
- ↑ Japan wikipedia article, Bus used in NEC PC-9821 series
- ↑ Dave Haynie, designer of the Zorro III bus, claims in this posting that the theoretical max of the Zorro III bus can be derived by the timing information given in ‘’chapter 5’’ of the Zorro III technical specification.
- ↑ Dave Haynie, designer of the Zorro III bus, states in this posting that Zorro III is an asynchronous bus and therefore does not have a classical MHz rating. A maximum theoretical MHz value may be derived by examining timing constraints detailed in the Zorro III technical specification, which should yield about 37.5 MHz. No existing implementation performs to this level.
- ↑ Dave Haynie, designer of the Zorro III bus, claims in this posting that Zorro III has a max burst rate of 150 MB/s.
- 1 2 3 4 5 6 Note that PCI Express 1.0/2.0 lanes use an 8b/10b encoding scheme.
- 1 2 3 4 5 PCIe 2.0 effectively doubles the bus standard's bandwidth from 2.5 GT/s to 5 GT/s
- 1 2 3 4 5 6 PCIe 3.0 increases the bandwidth from 5 GT/s to 8 GT/s and switches to 128b-130b encoding
- ↑ Intel LPC Interface Specification 1.1
- ↑ SCSI-1, SCSI-2 and SCSI-3 are signaling protocols and do not explicitly refer to a specific rate. Narrow SCSI exists using SCSI-1 and SCSI-2. Higher rates use SCSI-2 or later.
- ↑ minimum overhead is 38 byte L1/L2, 14 byte AoE per 1024 byte user data
- ↑ minimum overhead is 38 byte L1/L2, 20 byte IP, 20 byte TCP per 1460 byte user data
- 1 2 3 4 5 Fibre Channel 1GFC, 2GFC, 4GFC use an 8b/10b encoding scheme. Fibre Channel 10GFC, which uses a 64B/66B encoding scheme, is not compatible with 1GFC, 2GFC and 4GFC, and is used only to interconnect switches.
- 1 2 minimum overhead is 38 byte L1/L2, 14 byte AoE per 8192 byte user data
- 1 2 3 minimum overhead is 38 byte L1/L2, 20 byte IP, 20 byte TCP per 8960 byte user data
- 1 2 3 4 5 6 SATA and SAS use an 8b/10b encoding scheme.
- 1 2 minimum overhead is 38 byte L1/L2, 36 byte FC per 2048 byte user data
- ↑ Uses 128b/150b encoding
- ↑ proprietary serial version of IEEE-488 by Commodore International
- ↑ http://cbmmuseum.kuto.de/floppy.html
- 1 2 3 FireWire (IEEE 1394b) uses an 8b/10b encoding scheme.
- ↑ Scott Mueller. Upgrading and Repairing PCs. Que Publishing. Mar 7, 2013. Table 6.11: JEDEC Standard DDR4 Module (284-PIN DIMM) Speeds and Transfer Rate
- ↑ Comparison of AMD graphics processing units
- ↑ Comparison of Nvidia graphics processing units
- ↑ High Definition Audio Specification, Revision 1.0a, 2010
- ↑ Videsignline.com, Panel display interfaces and bandwidth: From TTL, LVDS, TDMS to DisplayPort
- ↑ Octavainc.com
- 1 2 3 Displayport Technical Overview, May 2010
- ↑ HDMI.org
- ↑ HDMI.org
External links
- Interconnection Speeds Compared
- Need for Speed: Theoretical Bandwidth Comparison—Contains a graph (from 2004) illustrating digital bandwidths
|