List of unsolved problems in mathematics

Since the Renaissance, every century has seen the solution of more mathematical problems than the century before, and yet many mathematical problems, both major and minor, still elude solution.[1]

An unsolved problem in mathematics does not refer to the kind of problem found as an exercise in a textbook, but rather to the answer to a major question or a general method that provides a solution to an entire class of problems. Prizes are often awarded for the solution to a long-standing problem, and lists of unsolved problems receive considerable attention. This article reiterates the list of Millennium Prize Problems of unsolved problems in mathematics (includes problems of physics and computer science) as of August 2015, and lists further unsolved problems in algebra, additive and algebraic number theories, analysis, combinatorics, algebraic, discrete, and Euclidean geometries, dynamical systems, partial differential equations, and graph, group, model, number, set and Ramsey theories, as well as miscellaneous unsolved problems. A list of problems solved since 1995 also appears, alongside some sources, general and specific, for the stated problems.

Lists of unsolved problems in mathematics

Over the course of time, several lists of unsolved mathematical problems have appeared. The following is a listing of those lists.

List Number of problems Proposed by Proposed in
Hilbert's problems 23 David Hilbert 1900
Landau's problems 4 Edmund Landau 1912
Taniyama's problems[2] 36 Yutaka Taniyama 1955
Thurston's 24 questions[3][4] 24 William Thurston 1982
Smale's problems 18 Stephen Smale 1998
Millennium Prize problems 7 Clay Mathematics Institute 2000
Unsolved Problems on Mathematics for the 21st Century[5] 22 Jair Minoro Abe, Shotaro Tanaka 2001
DARPA's math challenges[6][7] 23 DARPA 2007

Millennium Prize Problems

Of the original seven Millennium Prize Problems set by the Clay Mathematics Institute, six have yet to be solved, as of 2016:[8]

The seventh problem, the Poincaré conjecture, has been solved.[9] The smooth four-dimensional Poincaré conjecture—that is, whether a four-dimensional topological sphere can have two or more inequivalent smooth structures—is still unsolved.[10]

Unsolved problems

Additive number theory

Algebra

Algebraic geometry

Algebraic number theory

Analysis

Combinatorics

Discrete geometry

Euclidean geometry

Dynamical systems

Graph theory

Group theory

Model theory

Number theory (general)

Number theory (prime numbers)

Partial differential equations

Ramsey theory

Set theory

Other

Problems solved since 1995

References

  1. Eves, An Introduction to the History of Mathematics 6th Edition, Thomson, 1990, ISBN 978-0-03-029558-4.
  2. Shimura, G. (1989). "Yutaka Taniyama and his time". Bulletin of the London Mathematical Society 21 (2): 186–196. doi:10.1112/blms/21.2.186.
  3. http://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/friedl/papers/dmv_091514.pdf
  4. THREE DIMENSIONAL MANIFOLDS, KLEINIAN GROUPS AND HYPERBOLIC GEOMETRY
  5. Abe, Jair Minoro; Tanaka, Shotaro (2001). Unsolved Problems on Mathematics for the 21st Century. IOS Press. ISBN 9051994907.
  6. "DARPA invests in math". CNN. 2008-10-14. Archived from the original on 2009-03-04. Retrieved 2013-01-14.
  7. "Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO)". DARPA. 2007-09-10. Archived from the original on 2012-10-01. Retrieved 2013-06-25.
  8. "Millennium Problems".
  9. "Poincaré Conjecture". Clay Mathematics Institute. Archived from the original on 2013-12-15.
  10. "Smooth 4-dimensional Poincare conjecture".
  11. For background on the numbers that are the focus of this problem, see articles by Eric W. Weisstein, on pi (), e (), Khinchin's Constant (), irrational numbers (), transcendental numbers (), and irrationality measures () at Wolfram MathWorld, all articles accessed 15 December 2014.
  12. Michel Waldschmidt, 2008, "An introduction to irrationality and transcendence methods," at The University of Arizona The Southwest Center for Arithmetic Geometry 2008 Arizona Winter School, March 15–19, 2008 (Special Functions and Transcendence), see , accessed 15 December 2014.
  13. John Albert, posting date unknown, "Some unsolved problems in number theory" [from Victor Klee & Stan Wagon, "Old and New Unsolved Problems in Plane Geometry and Number Theory"], in University of Oklahoma Math 4513 course materials, see , accessed 15 December 2014.
  14. Solution to the Counterfeit Coin Problem and its Generalization
  15. Socolar, Joshua E. S.; Taylor, Joan M. (2012), "Forcing nonperiodicity with a single tile", The Mathematical Intelligencer 34 (1): 18–28, arXiv:1009.1419, doi:10.1007/s00283-011-9255-y, MR 2902144
  16. Matschke, Benjamin (2014), "A survey on the square peg problem", Notices of the American Mathematical Society 61 (4): 346–253, doi:10.1090/noti1100
  17. Norwood, Rick; Poole, George; Laidacker, Michael (1992), "The worm problem of Leo Moser", Discrete and Computational Geometry 7 (2): 153–162, doi:10.1007/BF02187832, MR 1139077
  18. Wagner, Neal R. (1976), "The Sofa Problem" (PDF), The American Mathematical Monthly 83 (3): 188–189, doi:10.2307/2977022, JSTOR 2977022
  19. Demaine, Erik D.; O'Rourke, Joseph (2007), "Chapter 22. Edge Unfolding of Polyhedra", Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge University Press, pp. 306–338
  20. Bellos, Alex (11 August 2015), "Attack on the pentagon results in discovery of new mathematical tile", The Guardian
  21. Kari, Jarkko (2009), "Structure of reversible cellular automata", Unconventional Computation: 8th International Conference, UC 2009, Ponta Delgada, Portugal, September 7ÔÇô11, 2009, Proceedings, Lecture Notes in Computer Science 5715, Springer, p. 6, doi:10.1007/978-3-642-03745-0_5
  22. 1 2 3 Shelah S, Classification Theory, North-Holland, 1990
  23. Keisler, HJ, "Ultraproducts which are not saturated." J. Symb Logic 32 (1967) 23—46.
  24. Malliaris M, Shelah S, "A dividing line in simple unstable theories." http://arxiv.org/abs/1208.2140
  25. Gurevich, Yuri, "Monadic Second-Order Theories," in J. Barwise, S. Feferman, eds., Model-Theoretic Logics (New York: Springer-Verlag, 1985), 479–506.
  26. Peretz, Assaf, "Geometry of forking in simple theories." J. Symbolic Logic Volume 71, Issue 1 (2006), 347–359.
  27. Shelah, Saharon (1999). "Borel sets with large squares". Fundamenta Mathematicae 159 (1): 1–50. arXiv:math/9802134.
  28. Shelah, Saharon (2009). Classification theory for abstract elementary classes. College Publications. ISBN 978-1-904987-71-0.
  29. Makowsky J, "Compactness, embeddings and definability," in Model-Theoretic Logics, eds Barwise and Feferman, Springer 1985 pps. 645–715.
  30. Baldwin, John T. (July 24, 2009). Categoricity (PDF). American Mathematical Society. ISBN 978-0821848937. Retrieved February 20, 2014.
  31. Shelah, Saharon. "Introduction to classification theory for abstract elementary classes".
  32. Hrushovski, Ehud, "Kueker's conjecture for stable theories." Journal of Symbolic Logic Vol. 54, No. 1 (Mar., 1989), pp. 207–220.
  33. Cherlin, G.; Shelah, S. (May 2007). "Universal graphs with a forbidden subtree". Journal of Combinatorial Theory, Series B 97 (3): 293–333. arXiv:math/0512218. doi:10.1016/j.jctb.2006.05.008.
  34. Džamonja, Mirna, "Club guessing and the universal models." On PCF, ed. M. Foreman, (Banff, Alberta, 2004).
  35. "Are the Digits of Pi Random? Berkeley Lab Researcher May Hold Key".
  36. Ribenboim, P. (2006). Die Welt der Primzahlen (in German) (2nd ed.). Springer. pp. 242–243. doi:10.1007/978-3-642-18079-8. ISBN 978-3-642-18078-1.
  37. Dobson, J. B. (June 2012) [2011], On Lerch's formula for the Fermat quotient, p. 15, arXiv:1103.3907
  38. Barros, Manuel (1997), "General Helices and a Theorem of Lancret", American Mathematical Society 125: 1503–1509, JSTOR 2162098
  39. Bourgain, Jean; Ciprian, Demeter; Larry, Guth (2015). "Proof of the main conjecture in Vinogradov’s Mean Value Theorem for degrees higher than three". Annals of Mathematics.
  40. http://arxiv.org/pdf/1509.05363v5.pdf
  41. Proof of the umbral moonshine conjecture - Springer
  42. http://arxiv.org/pdf/1406.6534v10.pdf
  43. Helfgott, Harald A. (2013). "Major arcs for Goldbach's theorem". arXiv:1305.2897 [math.NT].
  44. Helfgott, Harald A. (2012). "Minor arcs for Goldbach's problem". arXiv:1205.5252 [math.NT].
  45. Helfgott, Harald A. (2013). "The ternary Goldbach conjecture is true". arXiv:1312.7748 [math.NT].
  46. Casazza, Peter G.; Fickus, Matthew; Tremain, Janet C.; Weber, Eric (2006). Han, Deguang; Jorgensen, Palle E. T.; Larson, David Royal, eds. "The Kadison-Singer problem in mathematics and engineering: A detailed account". Contemporary Mathematics. Large Deviations for Additive Functionals of Markov Chains: The 25th Great Plains Operator Theory Symposium, June 7–12, 2005, University of Central Florida, Florida (American Mathematical Society.) 414: 299–355. doi:10.1090/conm/414/07820. ISBN 978-0-8218-3923-2. Retrieved 24 April 2015.
  47. Mackenzie, Dana. "Kadison–Singer Problem Solved" (PDF). SIAM News (January/February 2014) (Society for Industrial and Applied Mathematics). Retrieved 24 April 2015.
  48. http://arxiv.org/pdf/1204.2810v1.pdf
  49. http://www.math.jhu.edu/~js/Math646/brendle.lawson.pdf
  50. Marques, Fernando C.; Neves, André (2013). "Min-max theory and the Willmore conjecture". Annals of Mathematics. arXiv:1202.6036. doi:10.4007/annals.2014.179.2.6.
  51. http://arxiv.org/pdf/1101.1330v4.pdf
  52. http://www.math.uiuc.edu/~mineyev/math/art/submult-shnc.pdf
  53. http://annals.math.princeton.edu/wp-content/uploads/annals-v174-n1-p11-p.pdf
  54. https://www.uni-due.de/~bm0032/publ/BlochKato.pdf
  55. page 359
  56. "motivic cohomology - Milnor-Bloch-Kato conjecture implies the Beilinson-Lichtenbaum conjecture - MathOverflow".
  57. http://arxiv.org/pdf/1011.4105v3.pdf
  58. https://www.researchgate.net/profile/Juan_Souto3/publication/228365532_Non-realizability_and_ending_laminations_Proof_of_the_Density_Conjecture/links/541d85a10cf2218008d1d2e5.pdf
  59. Santos, Franciscos (2012). "A counterexample to the Hirsch conjecture". Annals of Mathematics (Princeton University and Institute for Advanced Study) 176 (1): 383–412. doi:10.4007/annals.2012.176.1.7.
  60. Ziegler, Günter M. (2012). "Who solved the Hirsch conjecture?". Documenta Mathematica. Extra Volume "Optimization Stories": 75–85.
  61. "Generalized Sidon sets".
  62. http://arxiv.org/pdf/0909.2360v3.pdf
  63. http://arxiv.org/pdf/0906.1612v2.pdf
  64. http://arxiv.org/pdf/0910.5501v5.pdf
  65. http://www.csie.ntu.edu.tw/~hil/bib/ChalopinG09.pdf
  66. http://arxiv.org/pdf/0809.4040.pdf
  67. 1 2 "Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman" (PDF) (Press release). Clay Mathematics Institute. March 18, 2010. Retrieved November 13, 2015. The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman.
  68. Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre’s modularity conjecture (I)", Inventiones Mathematicae 178 (3): 485–504, doi:10.1007/s00222-009-0205-7
  69. Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre’s modularity conjecture (II)", Inventiones Mathematicae 178 (3): 505–586, doi:10.1007/s00222-009-0206-6
  70. "2011 Cole Prize in Number Theory" (PDF). Notices of the AMS (Providence, Rhode Island, United States: American Mathematical Society) 58 (4): 610–611. ISSN 1088-9477. OCLC 34550461.
  71. http://www.ww.amc12.org/sites/default/files/pdf/pubs/SquaringThePlane.pdf
  72. http://arxiv.org/pdf/math/0509397.pdf
  73. Seigel-Itzkovich, Judy (2008-02-08). "Russian immigrant solves math puzzle". The Jerusalem Post. Retrieved 2015-11-12.
  74. http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf
  75. http://home.broadpark.no/~oddvark/angel/Angel.pdf
  76. http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf
  77. http://www.cs.bu.edu/~gacs/papers/angel.pdf
  78. http://www.ams.org/journals/proc/2005-133-09/S0002-9939-05-07752-X/S0002-9939-05-07752-X.pdf
  79. "Fields Medal – Ngô Bảo Châu". International Congress of Mathematicians 2010. ICM. 19 August 2010. Retrieved 2015-11-12. Ngô Bảo Châu is being awarded the 2010 Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods.
  80. http://arxiv.org/pdf/math/0405568v1.pdf
  81. "Graph Theory".
  82. Chung, Fan; Greene, Curtis; Hutchinson, Joan (April 2015). "Herbert S. Wilf (1931–2012)" (PDF). Notices of the AMS (Providence, Rhode Island, United States: American Mathematical Society) 62 (4): 358. ISSN 1088-9477. OCLC 34550461. The conjecture was finally given an exceptionally elegant proof by A. Marcus and G. Tardos in 2004.
  83. "Bombieri and Tao Receive King Faisal Prize" (PDF). Notices of the AMS (Providence, Rhode Island, United States: American Mathematical Society) 57 (5): 642–643. May 2010. ISSN 1088-9477. OCLC 34550461. Working with Ben Green, he proved there are arbitrarily long arithmetic progressions of prime numbers—a result now known as the Green–Tao theorem.
  84. http://arxiv.org/pdf/math/0412006v2.pdf
  85. Green, Ben (2004), "The Cameron–Erdős conjecture", The Bulletin of the London Mathematical Society 36 (6): 769–778, arXiv:math.NT/0304058, doi:10.1112/S0024609304003650, MR 2083752
  86. "News from 2007". American Mathematical Society. AMS. 31 December 2007. Retrieved 2015-11-13. The 2007 prize also recognizes Green for "his many outstanding results including his resolution of the Cameron-Erdős conjecture..."
  87. http://archive.numdam.org/ARCHIVE/PMIHES/PMIHES_2003__98_/PMIHES_2003__98__1_0/PMIHES_2003__98__1_0.pdf
  88. "Kemnitz’ conjecture revisited".
  89. http://www.ams.org/journals/jams/2004-17-01/S0894-0347-03-00440-5/S0894-0347-03-00440-5.pdf
  90. http://annals.math.princeton.edu/wp-content/uploads/annals-v158-n1-p04.pdf
  91. "The strong perfect graph theorem".
  92. http://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf
  93. Knight, R. W. (2002), The Vaught Conjecture: A Counterexample, manuscript
  94. http://www.ugr.es/~ritore/preprints/0406017.pdf
  95. Metsänkylä, Tauno (5 September 2003). "Catalan's conjecture: another old diophantine problem solved" (PDF). Bulletin of the American Mathematical Society (American Mathematical Society) 41 (1): 43–57. ISSN 0273-0979. The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu.
  96. http://www.ams.org/journals/jams/2001-14-04/S0894-0347-01-00373-3/S0894-0347-01-00373-3.pdf
  97. http://junon.u-3mrs.fr/monniaux/AHLMT02.pdf
  98. http://arxiv.org/pdf/math/0102150v4.pdf
  99. Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard (2001), "On the modularity of elliptic curves over Q: wild 3-adic exercises", Journal of the American Mathematical Society 14 (4): 843–939, doi:10.1090/S0894-0347-01-00370-8, ISSN 0894-0347, MR 1839918
  100. http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf
  101. http://intlpress.com/site/pub/files/_fulltext/journals/sdg/2002/0007/0001/SDG-2002-0007-0001-a001.pdf
  102. Croot, Ernest S., III (2000), Unit Fractions, Ph.D. thesis, University of Georgia, Athens. Croot, Ernest S., III (2003), "On a coloring conjecture about unit fractions", Annals of Mathematics 157 (2): 545–556, arXiv:math.NT/0311421, doi:10.4007/annals.2003.157.545
  103. http://arxiv.org/pdf/math/9906042v2.pdf
  104. http://arxiv.org/pdf/math/9906212v2.pdf
  105. Ullmo, E. (1998), "Positivité et Discrétion des Points Algébriques des Courbes", Annals of Mathematics 147 (1): 167–179, doi:10.2307/120987, Zbl 0934.14013
  106. Zhang, S.-W. (1998), "Equidistribution of small points on abelian varieties", Annals of Mathematics 147 (1): 159–165, doi:10.2307/120986
  107. Lafforgue, Laurent (1998), "Chtoucas de Drinfeld et applications" [Drinfelʹd shtukas and applications], Documenta Mathematica (in French) II: 563–570, ISSN 1431-0635, MR 1648105
  108. http://arxiv.org/pdf/1501.02155.pdf
  109. http://arxiv.org/pdf/math/9811079v3.pdf
  110. Norio Iwase (1 November 1998). "Ganea's Conjecture on Lusternik-Schnirelmann Category". ResearchGate.
  111. Merel, Loïc (1996). "Bornes pour la torsion des courbes elliptiques sur les corps de nombres" [Bounds for the torsion of elliptic curves over number fields]. Inventiones Mathematicae (in French) 124 (1): 437–449. doi:10.1007/s002220050059. MR 1369424
  112. https://www.researchgate.net/profile/Zhibo_Chen/publication/220188021_Harary's_conjectures_on_integral_sum_graphs/links/5422b2490cf290c9e3aac7fe.pdf
  113. Wiles, Andrew (1995). "Modular elliptic curves and Fermat's Last Theorem" (PDF). Annals of Mathematics (Annals of Mathematics) 141 (3): 443–551. doi:10.2307/2118559. JSTOR 2118559. OCLC 37032255.
  114. Taylor R, Wiles A (1995). "Ring theoretic properties of certain Hecke algebras". Annals of Mathematics (Annals of Mathematics) 141 (3): 553–572. doi:10.2307/2118560. JSTOR 2118560. OCLC 37032255.

Further reading

Books discussing recently solved problems


Books discussing unsolved problems

External links

This article is issued from Wikipedia - version of the Friday, May 06, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.