Betrothed numbers

Betrothed numbers or quasi-amicable numbers are two positive integers such that the sum of the proper divisors of either number is one more than the value of the other number. In other words, (m, n) are a pair of betrothed numbers if s(m) = n + 1 and s(n) = m + 1, where s(n) is the aliquot sum of n: an equivalent condition is that σ(m) = σ(n) = m + n + 1, where σ denotes the sum-of-divisors function.

The first few pairs of betrothed numbers (sequence A005276 in OEIS) are: (48, 75), (140, 195), (1050, 1925), (1575, 1648), (2024, 2295), (5775, 6128).

All known pairs of betrothed numbers have opposite parity. Any pair of the same parity must exceed 1010.

References

    External links

    This article is issued from Wikipedia - version of the Wednesday, May 14, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.