Tetrahedral number

A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid with a triangular base and three sides, called a tetrahedron. The nth tetrahedral number is the sum of the first n triangular numbers.

The first ten tetrahedral numbers are:

1, 4, 10, 20, 35, 56, 84, 120, 165, 220, … (sequence A000292 in OEIS)

Formula

The formula for the n-th tetrahedral number is represented by the 3rd rising factorial of n divided by the factorial of 3:

T_n={n(n+1)(n+2)\over 6} = {n^{\overline 3}\over 3!}

The tetrahedral numbers can also be represented as binomial coefficients:

T_n={n+2\choose3}.

Tetrahedral numbers can therefore be found in the fourth position either from left or right in Pascal's triangle.

Geometric interpretation

Tetrahedral numbers can be modelled by stacking spheres. For example, the fifth tetrahedral number (T5 = 35) can be modelled with 35 billiard balls and the standard triangular billiards ball frame that holds 15 balls in place. Then 10 more balls are stacked on top of those, then another 6, then another three and one ball at the top completes the tetrahedron.

When order-n tetrahedra built from Tn spheres are used as a unit, it can be shown that a space tiling with such units can achieve a densest sphere packing as long as n  4.[1]

Properties

Popular Culture

Te12 = 364, which is the total number of gifts "my true love sent to me" during the course of all 12 verses of the carol, The Twelve Days of Christmas [2]

See also

References

External links

This article is issued from Wikipedia - version of the Thursday, May 05, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.