Quasiperfect number

In mathematics, a quasiperfect number is a theoretical natural number n for which the sum of all its divisors (the divisor function σ(n)) is equal to 2n + 1. Quasiperfect numbers are abundant numbers.

No quasiperfect numbers have been found so far, but if a quasiperfect number exists, it must be an odd square number greater than 1035 and have at least seven distinct prime factors.[1]

Numbers do exist where the sum of all the divisors σ(n) is equal to 2n + 2: 20, 104, 464, 650, 1952, 130304, 522752 ... (sequence A088831 in OEIS). Many of these numbers are of the form 2n−1(2n − 3) where 2n − 3 is prime (instead of 2n − 1 with perfect numbers)

Notes

  1. Hagis, Peter; Cohen, Graeme L. (1982). "Some results concerning quasiperfect numbers". J. Austral. Math. Soc. Ser. A 33 (2): 275–286. doi:10.1017/S1446788700018401. MR 0668448.

References

This article is issued from Wikipedia - version of the Thursday, October 01, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.