Abundant number

Demonstration, with Cuisenaire rods, of the abundance of the number 12

In number theory, an abundant number or excessive number is a number for which the sum of its proper divisors is greater than the number itself. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example.

Definition

A number n for which the sum of divisors σ(n)>2n, or, equivalently, the sum of proper divisors (or aliquot sum) s(n)>n.

Abundance is the value σ(n)-2n (or s(n)-n).

Examples

The first few abundant numbers are:

12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, … (sequence A005101 in OEIS).

For example, the proper divisors of 24 are 1, 2, 3, 4, 6, 8, and 12, whose sum is 36. Because 36 is more than 24, the number 24 is abundant. Its abundance is 36  24 = 12.

Properties

 (1-\epsilon)(k\ln k)^{2-\epsilon}<\ln A(k)<(1+\epsilon)(k\ln k)^{2+\epsilon} for sufficiently large k.

Related concepts

Numbers whose sum of proper factors equals the number itself (such as 6 and 28) are called perfect numbers, while numbers whose sum of proper factors is less than the number itself are called deficient numbers. The first known classification of numbers as deficient, perfect or abundant was by Nicomachus in his Introductio Arithmetica (circa 100), which described abundant numbers as like deformed animals with too many limbs.

The abundancy index of n is the ratio σ(n)/n.[7] Distinct numbers n1, n2, ... (whether abundant or not) with the same abundancy index are called friendly numbers.

The sequence (ak) of least numbers n such that σ(n) > kn, in which a2 = 12 corresponds to the first abundant number, grows extremely quickly (sequence A134716 in OEIS).

If p = (p1,...,pn) is a list of primes, then p is termed abundant if some integer composed only of primes in p is abundant. A necessary and sufficient condition for this is that the product of pi/(pi-1) be at least 2.[8]

References

  1. D. Iannucci (2005), "On the smallest abundant number not divisible by the first k primes", Bulletin of the Belgian Mathematical Society 12 (1): 39–44
  2. Hall, Richard R.; Tenenbaum, Gérald (1988). Divisors. Cambridge Tracts in Mathematics 90. Cambridge: Cambridge University Press. p. 95. ISBN 0-521-34056-X. Zbl 0653.10001.
  3. Deléglise, Marc (1998). "Bounds for the density of abundant integers". Experimental Mathematics 7 (2): 137–143. doi:10.1080/10586458.1998.10504363. ISSN 1058-6458. MR 1677091. Zbl 0923.11127.
  4. 1 2 Tattersall (2005) p.134
  5. "Sloane's A048242 : Numbers that are not the sum of two abundant numbers", The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. Tatersall (2005) p.144
  7. Laatsch, Richard (1986). "Measuring the abundancy of integers". Mathematics Magazine 59 (2): 84–92. ISSN 0025-570X. JSTOR 2690424. MR 0835144. Zbl 0601.10003.
  8. Friedman, Charles N. (1993). "Sums of divisors and Egyptian fractions". Journal of Number Theory 44 (3): 328–339. doi:10.1006/jnth.1993.1057. MR 1233293. Zbl 0781.11015.

External links

This article is issued from Wikipedia - version of the Monday, March 21, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.