Superperfect number
In mathematics, a superperfect number is a positive integer n that satisfies
where σ is the divisor function. Superperfect numbers are a generalization of perfect numbers. The term was coined by Suryanarayana (1969).[1]
The first few superperfect numbers are
If n is an even superperfect number then n must be a power of 2, 2k, such that 2k+1-1 is a Mersenne prime.[1][2]
It is not known whether there are any odd superperfect numbers. An odd superperfect number n would have to be a square number such that either n or σ(n) is divisible by at least three distinct primes.[2] There are no odd superperfect numbers below 7x1024.[1]
Generalisations
Perfect and superperfect numbers are examples of the wider class of m-superperfect numbers, which satisfy
corresponding to m=1 and 2 respectively. For m ≥ 3 there are no even m-superperfect numbers.[1]
The m-superperfect numbers are in turn examples of (m,k)-perfect numbers which satisfy[3]
With this notation, perfect numbers are (1,2)-perfect, multiperfect numbers are (1,k)-perfect, superperfect numbers are (2,2)-perfect and m-superperfect numbers are (m,2)-perfect.[4] Examples of classes of (m,k)-perfect numbers are:
m k (m,k)-perfect numbers OEIS sequence 2 2 2, 4, 16, 64, 4096, 65536, 262144 A019279 2 3 8, 21, 512 A019281 2 4 15, 1023, 29127 A019282 2 6 42, 84, 160, 336, 1344, 86016, 550095, 1376256, 5505024 A019283 2 7 24, 1536, 47360, 343976 A019284 2 8 60, 240, 960, 4092, 16368, 58254, 61440, 65472, 116508, 466032, 710400, 983040, 1864128, 3932160, 4190208, 67043328, 119304192, 268173312, 1908867072 A019285 2 9 168, 10752, 331520, 691200, 1556480, 1612800, 106151936 A019286 2 10 480, 504, 13824, 32256, 32736, 1980342, 1396617984, 3258775296 A019287 2 11 4404480, 57669920, 238608384 A019288 2 12 2200380, 8801520, 14913024, 35206080, 140896000, 459818240, 775898880, 2253189120 A019289 3 any 12, 14, 24, 52, 98, 156, 294, 684, 910, 1368, 1440, 4480, 4788, 5460, 5840, ... A019292 4 any 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 26, 32, 39, 42, 60, 65, 72, 84, 96, 160, 182, ... A019293
Notes
References
- Superperfect Number at PlanetMath.org.
- Cohen, G. L.; te Riele, H. J. J. (1996). "Iterating the sum-of-divisors function". Experimental Mathematics 5: 93–100. doi:10.1080/10586458.1996.10504580. Zbl 0866.11003.
- Guy, Richard K. (2004). Unsolved problems in number theory (3rd ed.). Springer-Verlag. B9. ISBN 978-0-387-20860-2. Zbl 1058.11001.
- Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, eds. (2006). Handbook of number theory I. Dordrecht: Springer-Verlag. ISBN 1-4020-4215-9. Zbl 1151.11300.
- Suryanarayana, D. (1969). "Super perfect numbers". Elem. Math. 24: 16–17. Zbl 0165.36001.
|
|