IBM POWER microprocessors

For the instruction set named POWER, see IBM POWER Instruction Set Architecture.

IBM has a series of high performance microprocessors called POWER followed by a number designating generation, i.e. POWER1, POWER2, POWER3 and so forth up to the latest POWER8. These processor have been used by IBM in their RS/6000, AS/400, pSeries, iSeries, System p, System i and Power Systems line of servers and supercomputers. They have also been used in data storage devices by IBM and by other server manufactures like Bull and Hitachi.

The POWERn family of processors were developed in the late 1980s and are still in active development nearly 30 years later. In the beginning, they utilized the POWER instruction set architecture (ISA), but that evolved into PowerPC in later generations and then to Power Architecture. Today, only the naming scheme remains the same; modern POWER processors do not use the POWER ISA.

History

Early development

The 801 research project

Main article: IBM 801

In 1974 IBM started a project to build a telephone switching computer with, for the time, immense computational power. Since the application was comparably simple, this machine would need only to perform I/O, branches, add register-register, move data between registers and memory, and would have no need for special instructions to perform heavy arithmetic. This simple design philosophy, whereby each step of a complex operation is specified explicitly by one machine instruction, and all instructions are required to complete in the same constant time, would later come to be known as RISC. When the telephone switch project was cancelled IBM kept the design for the general purpose processor and named it 801 after building #801 at Thomas J. Watson Research Center.

The Cheetah project

By 1982 IBM continued to explore the superscalar limits of the 801 design by using multiple execution units to improve performance to determine if a RISC machine could maintain multiple instructions per cycle. Many changes were made to the 801 design to allow for multiple execution units and the Cheetah processor had separate branch prediction, fixed-point, and floating-point execution units. By 1984 CMOS was chosen since it allowed an increase in the level of circuit integration while improving transistor-logic performance.

The America project

In 1985, research on a second-generation RISC architecture started at the IBM Thomas J. Watson Research Center, producing the "AMERICA architecture"; in 1986, IBM Austin started developing the RS/6000 series computers based on that architecture. This was to become the first POWER processors using the first POWER ISA.

POWER

Main article: POWER1
A schematic showing the evolution of the different POWER, PowerPC and Power ISAs

In February 1990, the first computers from IBM to incorporate the POWER ISA were called the "RISC System/6000" or RS/6000. These RS/6000 computers were divided into two classes, workstations and servers, and hence introduced as the POWERstation and POWERserver. The RS/6000 CPU had 2 configurations, called the "RIOS-1" and "RIOS.9" (or more commonly the POWER1 CPU). A RIOS-1 configuration had a total of 10 discrete chips — an instruction cache chip, fixed-point chip, floating-point chip, 4 data L1 cache chips, storage control chip, input/output chips, and a clock chip. The lower cost RIOS.9 configuration had 8 discrete chipsan instruction cache chip, fixed-point chip, floating-point chip, 2 data cache chips, storage control chip, input/output chip, and a clock chip.

The POWER1 is the first microprocessor that used register renaming and out-of-order execution. A simplified and less powerful version of the 10 chip RIOS-1 was made in 1992 was developed for lower-end RS/6000s. It used only one chip and was called "RISC Single Chip" or RSC.

POWER1 processors

POWER2

Main article: POWER2

IBM started the POWER2 processor effort as a successor to the POWER1. By adding a second fixed-point unit, a second powerful floating point unit, and other performance enhancements and new instructions to the design, the POWER2 ISA had leadership performance when it was announced in November 1993. The POWER2 was a multi-chip design, but IBM also made a single chip design of it, called the POWER2 Super Chip or P2SC that went into high performance servers and supercomputers. At the time of its introduction in 1996, the P2SC was the largest processor with the highest transistor count in the industry and was a leader in floating point operations.

POWER2 processors

PowerPC

Main article: PowerPC

In 1991, Apple looked for a future alternative to Motorola's 68000-based CISC platform, and Motorola experimented with a RISC platform of its own, the 88000. IBM joined the discussion and the three founded the AIM alliance to build the PowerPC ISA, heavily based on the POWER ISA, but with additions from both Apple and Motorola. It was to be a complete 32/64 bit RISC architecture, with a promise to range from very low end embedded microcontrollers to the very high end supercomputer and server applications.

After two years of development, the resulting PowerPC ISA was introduced in 1993. A modified version of the RSC architecture, PowerPC added single-precision floating point instructions and general register-to-register multiply and divide instructions, and removed some POWER features. It also added a 64-bit version of the ISA and support for SMP.

The Amazon project

Main article: IBM RS64

In 1990, IBM wanted to merge the low end server and mid range server architectures, the RS/6000 RISC ISA and AS/400 CISC ISA into one common RISC ISA that could host both IBM's AIX and OS/400 operating systems. The existing POWER and the upcoming PowerPC ISAs were deemed unsuitable by the AS/400 team so an extension to the 64-bit PowerPC instruction set was developed called PowerPC AS for Advances Series or Amazon Series. Later, additions from the RS/6000 team and AIM Alliance PowerPC were included, and by 2001, with the introduction of POWER4, they were all joined into one instruction set architecture: the PowerPC v.2.0.

POWER3

Main article: POWER3

The POWER3 began its life as "PowerPC 630", a successor of the commercially unsuccessful PowerPC 620. It used a combination of the POWER2 ISA and the 32/64-bit PowerPC ISA set with support for SMP and single-chip implementation. It was used to great extent in IBM's RS/6000 computers, while the second generation version, the POWER3-II, was the first commercially available processor from IBM using copper interconnects. The POWER3 was the last processor to use a POWER instruction set; all subsequent models used some version of the PowerPC instruction set.

POWER3 processors

POWER4

Main article: POWER4

The POWER4 merged the 32/64 bit PowerPC instruction set and the 64-bit PowerPC AS instruction set from the Amazon project to the new PowerPC v.2.0 specification, unifying IBM's RS/6000 and AS/400 families of computers. Besides the unification of the different platforms, POWER4 was also designed to reach very high frequencies and have large on-die L2 caches. It was the first commercially available multi-core processor and came in single-die versions as well as in four-chip multi-chip modules. In 2002, IBM also made a cost- and feature-reduced version of the POWER4 called PowerPC 970 by Apple's request.

POWER4 processors

POWER5

Main article: POWER5

The POWER5 processors built on the popular POWER4 and incorporated simultaneous multithreading into the design, a technology pioneered in the PowerPC AS based RS64-III processor, and on-die memory controllers. It was designed for multiprocessing on a massive scale and came in multi-chip modules with onboard large L3 cache chips.

POWER5 processors

Power Architecture

Main article: Power Architecture

A joint organization was founded in 2004 called Power.org with the mission to unify and coordinate future development of the PowerPC specifications. By then, the PowerPC specification was fragmented since Freescale (née Motorola) and IBM had taken different paths in their respective development of it. Freescale had prioritized 32-bit embedded applications and IBM high-end servers and supercomputers. There was also a collection of licensees of the specification like AMCC, Synopsys, Sony, Microsoft, P.A. Semi, CRAY and Xilinx that needed coordination. The joint effort was not only to streamline development of the technology but also to streamline marketing.

The new instruction set architecture was called Power Architecture and merged the PowerPC v.2.02 from the POWER5 with the PowerPC Book E specification from Freescale as well as some related technologies like the Vector-Media Extensions known under the brand name AltiVec (also called VMX by IBM) and hardware virtualization. This new ISA was called Power ISA v.2.03 and POWER5 was the first high end processor from IBM to use it. Older POWER and PowerPC specifications did not make the cut and those instruction sets were henceforth deprecated for good. There is no active development on any processor type today that uses these older instruction sets.

POWER6

Main article: POWER6

POWER6 was the fruit of the ambitions eCLipz Project, joining the I (AS/400), P (RS/6000) and Z (Mainframe) instruction sets under one common platform. I and P was already joined with the POWER4, but the eCLipz effort failed to include the CISC based z/Architecture and where the z10 processor became POWER6's eCLipz sibling. z/Architecture remains a separate design track to this day not related to Power Architecture instruction set in any way.

Because of eCLipz, the POWER6 is an unusual design as it aimed for very high frequencies and sacrificed out-of-order execution, something that has been a feature for POWER and PowerPC processors since their inception. POWER6 also introduced the decimal floating point unit to the Power ISA, something it shares with z/Architecture.

With the POWER6, in 2008 IBM merged the former System p and System i server and workstation families into one family called Power Systems. Power Systems machines can run different operating systems like AIX, Linux and IBM i.

POWER6 processors

POWER7

Main article: POWER7

The POWER7 symmetric multiprocessor design was a substantial evolution from the POWER6 design, focusing more on power efficiency through multiple cores, simultaneous multithreading (SMT), out-of-order execution and large on-die eDRAM L3 caches. The eight-core chip could execute 32 threads in parallel, and has a mode in which it could disable cores to reach higher frequencies for the ones that are left. It uses a new high-performance floating point unit called VSX that merges the functionality of the traditional FPU with AltiVec. Even while the POWER7 run at lower frequencies than POWER6, each POWER7 core performed faster than its POWER6 counterpart.

POWER7 processors

POWER8

Main article: POWER8

POWER8 is a 4 GHz, 12 core processor with 8 hardware threads per core for a total of 96 threads of parallel execution. It uses 96 MB of eDRAM L3 cache on chip and 128 MB off-chip L4 cache and a new extension bus called CAPI that runs on top of PCIe, replacing the older GX bus. The CAPI bus can be used to attach dedicated off-chip accelerator chips such as GPUs, ASICs and FPGAs. IBM states that it is two to three times as fast as its predecessor, the POWER7.

It will be built on a 22 nanometer process at the end of 2013 or early 2014.[1][2] In December 2012, IBM began submitting patches to the 3.8 version of the Linux kernel, to support new POWER8 features including the VSX-2 instructions.[3]

POWER9

IBM has been designing the future POWER9 processor for quite a while according to William Starke, a systems architect for the POWER8 processor.[4] The POWER9 will be the first to incorporate elements of the Power ISA version 3.0 that was released in December 2015, including the VSX-3 instructions, and will also incorporate support for Nvidia's NVLink bus technology.[5][6]

The United States Department of Energy together with Oak Ridge National Laboratory and Lawrence Livermore National Laboratory have contracted IBM and Nvidia to build two supercomputers, the Summit and the Sierra, that will be based on POWER9 processors coupled with Nvidia's Volta GPUs. These systems are slated to go online in 2017.[7][8][9]

POWER9, coming in 2017, will be manufactured using a 14 nm FinFET process, and will come in at least two versions, two 24 core versions for scale up and scale out applications, and possible more since the POWER9 architecture is open for licensing and modification by the OpenPOWER Foundation members.[10]

Devices

Name Image ISA Bits Cores Fab Transistors Die size L1 L2 L3 Clock Package Introduced
RIOS-1 POWER 32 bits 1 1.0 μm 6.9 M 1284 mm2 8 KB I
64 KB D
n/a n/a 20–30 MHz 10 chips
in CPGA
on PCB
1990
RIOS.9 POWER 32 bits 1 1.0 μm 6.9 M 8 KB I
32 KB D
n/a n/a 20–30 MHz 8 chips
in CPGA
on PCB
1990
POWER1+ POWER 32 bits 1 6.9 M 8 KB I
64 KB D
n/a n/a 25–41.6 MHz 8 chips
in CPGA
on PCB
1991
POWER1++ POWER 32 bits 1 6.9 M 8 KB I
64 KB D
n/a n/a 25–62.5 MHz 8 chips
in CPGA
on PCB
1992
RSC POWER 32 bits 1 0.8 μm 1 M 226.5 mm2 8 KB
unified
n/a n/a 33–45 MHz 201 pin CPGA 1992
POWER2 POWER2 32 bits 1 0.72 μm 23 M 1042.5 mm2
819 mm2
32 KB I
128265 KB D
n/a n/a 55–71.5 MHz 6–8 dies
on ceramic 734 pin MCM
1993
POWER2+ POWER2 32 bits 1 0.72 μm 23 M 819 mm2 32 KB I
64128 KB D
0.52 MB
external
n/a 55–71.5 MHz 6 chips
in CBGA
on PCB
1994
P2SC POWER2 32 bits 1 0.29 μm 15 M 335 mm2 32 KB I
128 KB D
n/a n/a 120–135 MHz CCGA 1996
P2SC+ POWER2 32 bits 1 0.25 μm 15 M 256 mm2 32 KB I
128 KB D
n/a n/a 160 MHz CCGA 1997
RAD6000 POWER 32 bits 1 0.5 μm 1.1 M 8 KB unified n/a n/a 20–33 MHz Rad hard 1997
POWER3 POWER2
PowerPC 1.1
64 bits 1 0.35 μm 15 M 270 mm2 32 KB I
64 KB D
1–16 MB
external
n/a 200–222 MHz 1088 pin CLGA 1998
POWER3-II POWER2
PowerPC 1.1
64 bits 1 0.25 μm Cu 23 M 170 mm2 32 KB I
64 KB D
1–16 MB
external
n/a 333–450 MHz 1088 pin CLGA 1999
POWER4 PowerPC 2.00
PowerPC-AS
64 bits 2 180 nm 174 M 412 mm2 64 KB I
32 KB D
per core
1.41 MB
per core
32 MB
external
1–1.3 GHz 1024 pin CLGA
ceramic MCM
2001
POWER4+ PowerPC 2.01
PowerPC-AS
64 bits 2 130 nm 184 M 267 mm2 64 KB I
32 KB D
per core
1.41 MB
per chip
32 MB
external
1.2–1.9 GHz 1024 pin CLGA
ceramic MCM
2002
POWER5 PowerPC 2.02
Power ISA 2.03
64 bits 2 130 nm 276 M 389 mm2 32 KB I
32 KB D
per core
1.875 MB
per chip
32 MB
external
1.5–1.9 GHz ceramic DCM
ceramic MCM
2004
POWER5+ PowerPC 2.02
Power ISA 2.03
64 bits 2 90 nm 276 M 243 mm2 32 KB I
32 KB D
per core
1.875 MB
per chip
32 MB
external
1.5–2.3 GHz ceramic DCM
ceramic QCM
ceramic MCM
2005
POWER6 Power ISA 2.03 64 bits 2 65 nm 790 M 341 mm2 64 KB I
64 KB D
per core
4 MB
per core
32 MB
external
3.6–5 GHz CLGA
OLGA
2007
POWER6+ Power ISA 2.03 64 bits 2 65 nm 790 M 341 mm2 64 KB I
64 KB D
per core
4 MB
per core
32 MB
external
3.6–5 GHz CLGA
OLGA
2009
POWER7 Power ISA 2.06 64 bits 8 45 nm 1.2 B 567 mm2 32 KB I
32 KB D
per core
256 KB
per core
32 MB
per chip
2.4–4.25 GHz CLGA
OLGA
organic QCM
2010
POWER7+ Power ISA 2.06 64 bits 8 32 nm 2.1 B 567 mm2 32 KB I
32 KB D
per core
256 KB
per core
80 MB
per chip
2.4–4.4 GHz OLGA
organic DCM
2012
POWER8 Power ISA 2.07 64 bits 6
12
22 nm ??
4.2 B
362 mm2
675 mm2
32 KB I
64 KB D
per core
512 KB
per core
48 MB
96 MB
per chip
2.75-4.2 GHz OLGA DCM
OLGA SCM
2014
Name Image ISA Bits Cores Fab Transistors Die size L1 L2 L3 Clock Package Introduced

See also

References

External links

This article is issued from Wikipedia - version of the Thursday, April 07, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.