-yllion

-yllion is a proposal from Donald Knuth for the terminology and symbols of an alternate decimal superbase system. In it, he adapts the familiar English terms for large numbers to provide a systematic set of names for much larger numbers. In addition to providing an extended range, -yllion also dodges the long and short scale ambiguity of -illion.

Knuth's digit grouping is exponential instead of linear; each division doubles the number of digits handled, whereas the familiar system only adds three or six more. His system is basically the same as one of the ancient and now-unused Chinese numeral systems, in which units stand for 104, 108, 1016, 1032, ..., 102n, and so on. Today the corresponding characters are used for 104, 108, 1012, 1016, and so on.

Details and examples

For a more extensive table, see Myriad system. The corresponding Chinese numerals are given, with the traditional form listed before the simplified form. Today these numerals are still in use, but are used for different values.

Value Name Notation Chinese Pīnyīn (Mandarin) Jyutping (Cantonese) Pe̍h-ōe-jī (Hokkien)
100 One 1 jat1 it/chit
101 Ten 10 shí sap6 si̍p/tsa̍p
102 Hundred 100 bǎi baak3 pah
103 Ten hundred 1000 qiān cin1 chhian
104 Myriad 1,0000 萬, 万 wàn maan6 bān
105 Ten myriad 10,0000 十萬, 十万 shíwàn sap6 maan6 si̍p/tsa̍p bān
106 Hundred myriad 100,0000 百萬, 百万 bǎiwàn baak3 maan6 pah bān
107 Ten hundred myriad 1000,0000 千萬, 千万 qiānwàn cin1 maan6 chhian bān
108 Myllion 1;0000,0000 億, 亿 jik1 ik
1012 Myriad myllion 1,0000;0000,0000 萬億, 万亿 wànyì maan6 jik1 bān ik
1016 Byllion 1:0000,0000;0000,0000 zhào siu6 tiāu
1024 Myllion byllion 1;0000,0000:0000,0000;0000,0000 億兆, 亿兆 yìzhào jik1 siu6 ik tiāu
1032 Tryllion 1'0000,0000;0000,0000:0000,0000;0000,0000 jīng ging1 kiann
1064 Quadryllion gāi goi1 gai
10128 Quintyllion zi2 tsi
10256 Sextyllion ráng joeng4 liōng
10512 Septyllion 溝, 沟 gōu kau1 kau
101024 Octyllion 澗, 涧 jiàn gaan3 kán
102048 Nonyllion zhēng zing3 tsiànn
104096 Decyllion 載, 载 zài zoi3 tsài

In Knuth's -yllion proposal:

Each new number name is the square of the previous one — therefore, each new name covers twice as many digits. Knuth continues borrowing the traditional names changing "illion" to "yllion" on each one. Abstractly, then, "one n-yllion" is 10^{2^{n+2}}. "One trigintyllion" (10^{2^{32}}) would have nearly forty-three myllion (4300 million) digits (by contrast, a conventional "trigintillion" has merely 94 digits not even a hundred, let alone a thousand million, and still 7 digits short of a googol).

See also

References

This article is issued from Wikipedia - version of the Monday, January 18, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.