Antiseptic

Not to be confused with Antibiotic.

Antiseptic(s) (from Greek ἀντί anti, "against"[1] and σηπτικός sēptikos, "putrefactive"[2]) are antimicrobial substances that are applied to living tissue/skin to reduce the possibility of infection, sepsis, or putrefaction. Antiseptics are generally distinguished from antibiotics by the latter's ability to be transported through the lymphatic system to destroy bacteria within the body, and from disinfectants, which destroy microorganisms found on non-living objects.

Disinfectants do not kill bacterial spores e.g., on surgical instruments; a sterilization process is required for that. Even sterilization may not destroy prions.

Some antiseptics are true germicides, capable of destroying microbes (bacteriocidal), while others are bacteriostatic and only prevent or inhibit their growth.

Antibacterials are antiseptics that have the proven ability to act against bacteria. Microbicides which destroy virus particles are called viricides or antivirals.

Usage in surgery

Joseph Lister

The widespread introduction of antiseptic surgical methods followed the publishing of the paper Antiseptic Principle of the Practice of Surgery in 1867 by Joseph Lister, inspired by Louis Pasteur's germ theory of putrefaction. In this paper, Lister advocated the use of carbolic acid (phenol) as a method of ensuring that any germs present were killed. Some of this work was anticipated by:

Functionality

Bacterial growth requires a food supply, moisture, oxygen (if the bacteria are obligate aerobes), and a certain minimum temperature (see bacteriology). These conditions have been studied and dealt with in food preservation and the ancient practice of embalming the dead, which is the earliest known systematic use of antiseptics.

In early inquiries before microbes were understood, much emphasis was given to the prevention of putrefaction, and procedures were carried out to determine the amount of agent that must be added to a given solution to prevent the development of pus and putrefaction; however, due to a lack of a developed understanding of germ theory, this method was inaccurate and, today, an antiseptic is judged by its effect on pure cultures of a defined microbe and/or its vegetative and spore forms. The standardization of antiseptics has been implemented in many instances, and a water solution of phenol of a certain fixed strength is now used as the standard to which other antiseptics are compared.

The fundamental idea of all anti-pathogenic agents is to exploit a difference between parasite and host. For bacteria, that may involve interfering with their cell walls or internal biochemistry which differs from humans'.

Pathogens show a total-dose response: if you expose them to a dilute solution for a long time, this is equivalent to dosing them with a strong solution for less time. This makes the pre-industrial medical notion of poultice clear: weaker antiseptics require longer exposure. This is true for many chemical antibiotics as well as heat and UV exposure.

Some common antiseptics

A bottle of ethanol (95%) – an antiseptic

Hydrogen peroxide vapor at high concentrations (> 50%) in mild vacuum can be used to sterilize surgical instruments with long thin lumens in under an hour without damage to temperature-sensitive electronics.

Hydrogen peroxide and acetic acid make peracetic acid which is more anti-microbial (antiseptic) than peroxide itself.

The above peroxide antimicrobials have the advantage of being cheap and decomposing to biologically harmless water and oxygen (and CO2, acetate, etc.)

Evolved resistance

By continued exposure to antibiotics, bacteria may evolve to the point where they are no longer harmed by these compounds.[17]

Bacteria can also develop a resistance to antiseptics, but the effect is generally less pronounced.[18]

The mechanism by which bacteria evolve may vary in response to different antiseptics. Low concentrations of an antiseptic may encourage growth of a bacterial strain that is resistant to the antiseptic, where a higher concentration of the antiseptic would simply kill the bacteria. In addition, use of an excessively high concentration of an antiseptic may cause tissue damage or slow the process of wound healing.[8] Consequently, antiseptics are most effective when used at the correct concentration—a high enough concentration to kill harmful bacteria, fungi or viruses, but a low enough concentration to avoid damage to the tissue.

See also

Notes

  1. Liddell, Henry George; Scott, Robert. "ἀντί". A Greek-English Lexicon. Perseus perseus.tufts.edu.
  2. Liddell, Henry George; Scott, Robert. "σηπτικός". A Greek-English Lexicon. Perseus perseus.tufts.edu.
  3. Eming SA, Krieg T, Davidson JM (2007). "Inflammation in wound repair: molecular and cellular mechanisms". J. Invest. Dermatol. 127 (3): 514–25. doi:10.1038/sj.jid.5700701. PMID 17299434.
  4. Edwards, H, 1976. Theodoric of Cervia, a medieval antiseptic surgeon, Proceedings of the Royal Society, 69 (3) pages=553–5 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1864551/?page=1 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1864551/?page=2
  5. "Doctrine and Covenants 89:1–9". Lds.org. 2012-02-21. Retrieved 2014-03-04.
  6. Best M, Neuhauser D (2004). "Ignaz Semmelweis and the birth of infection control". Qual Saf Health Care 13 (3): 233–4. doi:10.1136/qhc.13.3.233. PMC 1743827. PMID 15175497.
  7. Wilgus TA, Bergdall VK, Dipietro LA, Oberyszyn TM (2005). "Hydrogen peroxide disrupts scarless fetal wound repair". Wound Repair Regen 13 (5): 513–9. doi:10.1111/j.1067-1927.2005.00072.x. PMID 16176460.
  8. 1 2 "Antiseptics on Wounds: An Area of Controversy: Hydrogen Peroxide". Medscape.com. Retrieved 2014-03-04.
  9. Kaehn K (2010). "Polihexanide: a safe and highly effective biocide". Skin Pharmacol Physiol. 23 Suppl: 7–16. doi:10.1159/000318237. PMID 20829657.
  10. Eberlein T, Assadian O (2010). "Clinical use of polihexanide on acute and chronic wounds for antisepsis and decontamination". Skin Pharmacol Physiol. 23 Suppl: 45–51. doi:10.1159/000318267. PMID 20829662.
  11. Eberlein T, Haemmerle G, Signer M; et al. (January 2012). "Comparison of PHMB-containing dressing and silver dressings in patients with critically colonised or locally infected wounds". J Wound Care 21 (1): 12, 14–6, 18–20. PMID 22240928.
  12. Malik, Y; Goyal, S (2006). "Virucidal efficacy of sodium bicarbonate on a food contact surface against feline calicivirus, a norovirus surrogate". International Journal of Food Microbiology 109 (1–2): 160–3. doi:10.1016/j.ijfoodmicro.2005.08.033. PMID 16540196.
  13. Zamani, M; Sharifi Tehrani, A; Ali Abadi, AA (2007). "Evaluation of antifungal activity of carbonate and bicarbonate salts alone or in combination with biocontrol agents in control of citrus green mold". Communications in agricultural and applied biological sciences 72 (4): 773–7. PMID 18396809.
  14. Chemistry: general, medical, and pharmaceutical — Google Books. Books.google.com. p. 460. Retrieved 2016-03-15.
  15. Leung's Encyclopedia of Common Natural Ingredients: Used in Food, Drugs and ... - Ikhlas A. Khan, Ehab A. Abourashed — Google Books. Books.google.com. 2011-09-21. p. 41. Retrieved 2016-03-15.
  16. Biocompatibility of Dental Materials — Gottfried Schmalz, Dorthe Arenholt Bindslev — Google Books. Books.google.com. p. 352. Retrieved 2016-03-15.
  17. "CDC – Antibacterial Household Products: Cause for Concern (Stuart B. Levy)Tufts University School of Medicine, Boston, Massachusetts, USA (Presentation from the 2000 Emerging Infectious Diseases Conference in Atlanta, Georgia)". cdc.gov.
  18. Albina Mikhaylova; Bernd Liesenfeld; William Toreki; David Moore; Jillian Vella; Roy Carr; Gerald Olderman; Christopher Batich; Gregory Schultz (2009). "Bacterial Resistance Issues in Wound Care and Wound Dressings" (PDF). QuickMedTechnologies. Symposium on Advanced Wound Care and Wound Healing Society Meeting, Poster LB-051. Retrieved 2014-03-04.

References

External links


This article is issued from Wikipedia - version of the Saturday, April 30, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.