List of A4 polytopes

Orthographic projections
A4 Coxeter plane

5-cell

In 4-dimensional geometry, there are 9 uniform polytopes with A4 symmetry. There is one self-dual regular form, the 5-cell with 5 vertices.

Visualizations

Each can be visualized as symmetric orthographic projections in Coxeter planes of the A4 Coxeter group, and other subgroups. Three Coxeter plane 2D projections are given, for the A4, A3, A2 Coxeter groups, showing symmetry order 5,4,3, and doubled on even Ak orders to 10,4,6 for symmetric Coxeter diagrams.

The 3D picture are drawn as Schlegel diagram projections, centered on the cell at pos. 3, with a consistent orientation, and the 5 cells at position 0 are shown solid.

+ Uniform polytopes with A4 symmetry

# Name Coxeter diagram
and Schläfli
symbols
Coxeter plane graphs Schlegel diagram Net
A4
[5]
A3
[4]
A2
[3]
Tetrahedron
centered
Dual tetrahedron
centered
1 5-cell
pentachoron

{3,3,3}
2 rectified 5-cell
r{3,3,3}
3 truncated 5-cell
t{3,3,3}
4 cantellated 5-cell
rr{3,3,3}
7 cantitruncated 5-cell
tr{3,3,3}
8 runcitruncated 5-cell
t0,1,3{3,3,3}

+ Uniform polytopes with extended A4 symmetry

# Name Coxeter diagram
and Schläfli
symbols
Coxeter plane graphs Schlegel diagram Net
A4
[[5]] = [10]
A3
[4]
A2
[[3]] = [6]
Tetrahedron
centered
5 *runcinated 5-cell
t0,3{3,3,3}
6 *bitruncated 5-cell
decachoron

2t{3,3,3}
9 *omnitruncated 5-cell
t0,1,2,3{3,3,3}

Coordinates

The coordinates of uniform 4-polytopes with pentachoric symmetry can be generated as permutations of simple integers in 5-space, all in hyperplanes with normal vector (1,1,1,1,1). The A4 Coxeter group is palindromic, so repeated polytopes exist in pairs of dual configurations. There are 3 symmetric positions, and 6 pairs making the total 15 permutations of one or more rings. All 15 are listed here in order of binary arithmetic for clarity of the coordinate generation from the rings in each corresponding Coxeter diagram.

The number of vertices can be deduced here from the permutations of the number of coordinates, peaking at 5 factorial for the omnitruncated form with 5 unique coordinate values.

5-cell truncations in 5-space:
# Base point Name
(symmetric name)
Coxeter diagram Vertices
1 (0, 0, 0, 0, 1)
(1, 1, 1, 1, 0)
5-cell
Trirectified 5-cell

55!/(4!)
2 (0, 0, 0, 1, 1)
(1, 1, 1, 0, 0)
Rectified 5-cell
Birectified 5-cell

105!/(3!2!)
3 (0, 0, 0, 1, 2)
(2, 2, 2, 1, 0)
Truncated 5-cell
Tritruncated 5-cell

205!/(3!)
5 (0, 1, 1, 1, 2) Runcinated 5-cell 205!/(3!)
4 (0, 0, 1, 1, 2)
(2, 2, 1, 1, 0)
Cantellated 5-cell
Bicantellated 5-cell

305!/(2!2!)
6 (0, 0, 1, 2, 2) Bitruncated 5-cell 305!/(2!2!)
7 (0, 0, 1, 2, 3)
(3, 3, 2, 1, 0)
Cantitruncated 5-cell
Bicantitruncated 5-cell

605!/2!
8 (0, 1, 1, 2, 3)
(3, 2, 2, 1, 0)
Runcitruncated 5-cell
Runcicantellated 5-cell

605!/2!
9 (0, 1, 2, 3, 4) Omnitruncated 5-cell 1205!

References

    External links

    This article is issued from Wikipedia - version of the Thursday, March 19, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.