Pentellated 7-cubes

In seven-dimensional geometry, a pentellated 7-cube is a convex uniform 7-polytope with 5th order truncations (pentellation) of the regular 7-cube. There are 32 unique pentellations of the 7-cube with permutations of truncations, cantellations, runcinations, and sterications. 16 are more simply constructed relative to the 7-orthoplex.


7-cube

Pentellated 7-cube

Pentitruncated 7-cube

Penticantellated 7-cube

Penticantitruncated 7-cube

Pentiruncinated 7-cube

Pentiruncitruncated 7-cube

Pentiruncicantellated 7-cube

Pentiruncicantitruncated 7-cube

Pentistericated 7-cube

Pentisteritruncated 7-cube

Pentistericantellated 7-cube

Pentistericantitruncated 7-cube

Pentisteriruncinated 7-cube

Pentisteriruncitruncated 7-cube

Pentisteriruncicantellated 7-cube

Pentisteriruncicantitruncated 7-cube

Pentellated 7-cube

Pentellated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentitruncated 7-cube

pentitruncated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,1,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Penticantellated 7-cube

Penticantellated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,2,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Penticantitruncated 7-cube

penticantitruncated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,1,2,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names


orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentiruncinated 7-cube

pentiruncinated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,3,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentiruncitruncated 7-cube

pentiruncitruncated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,1,3,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentiruncicantellated 7-cube

pentiruncicantellated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,2,3,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentiruncicantitruncated 7-cube

pentiruncicantitruncated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,1,2,3,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph too complex too complex
Dihedral symmetry [6] [4]

Pentistericated 7-cube

pentistericated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,4,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentisteritruncated 7-cube

pentisteritruncated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,1,4,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentistericantellated 7-cube

pentistericantellated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,2,4,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentistericantitruncated 7-cube

pentistericantitruncated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,1,2,4,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentisteriruncinated 7-cube

Pentisteriruncinated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,3,4,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentisteriruncitruncated 7-cube

pentisteriruncitruncated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,1,3,4,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges40320
Vertices10080
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentisteriruncicantellated 7-cube

pentisteriruncicantellated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,2,3,4,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges40320
Vertices10080
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentisteriruncicantitruncated 7-cube

pentisteriruncicantitruncated 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,1,2,3,4,5{4,35}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB7, [4,35]
Propertiesconvex

Alternate names

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Related polytopes

These polytopes are a part of a set of 127 uniform 7-polytopes with B7 symmetry.

Notes

  1. Klitzing, (x3o3o3o3o3x4o - )
  2. Klitzing, (x3x3o3o3o3x4o - )
  3. Klitzing, (x3o3x3o3o3x4o - )
  4. Klitzing, (x3x3x3oxo3x4o - )
  5. Klitzing, (x3o3o3x3o3x4o - )
  6. Klitzing, (x3x3o3x3o3x4o - )
  7. Klitzing, (x3o3x3x3o3x4o - )
  8. Klitzing, (x3x3x3x3o3x4o - )
  9. Klitzing, (x3o3o3o3x3x4o - )
  10. Klitzing, (x3x3o3o3x3x4o - )
  11. Klitzing, (x3o3x3o3x3x4o - )
  12. Klitzing, (x3x3x3o3x3x4o - )
  13. Klitzing, (x3o3o3x3x3x4o - )
  14. Klitzing, (x3x3o3x3x3x4o - )
  15. Klitzing, (x3o3x3x3x3x4o - )
  16. Klitzing, (x3x3x3x3x3x4o - )

References

External links

This article is issued from Wikipedia - version of the Sunday, December 28, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.