7,8-Dihydroxyflavone (7,8-DHF) is a naturally-occurring flavone found in Godmania aesculifolia, Tridax procumbens, and primula tree leaves.[1][2][3] It has been found to act as a potent and selective small-molecule agonist of the TrkB receptor (Kd ≈ 320 nM), the main signaling receptor of brain-derived neurotrophic factor (BDNF).[4][5][6] 7,8-DHF is both orally-bioavailable and able to penetrate the blood-brain-barrier.[7][8]
7,8-DHF has demonstrated remarkable therapeutic efficacy in animal models of a variety of central nervous system disorders,[6] including depression,[7] Alzheimer's disease,[9][10][11] cognitive deficits in schizophrenia,[12] Parkinson's disease,[4] Huntington's disease,[13] amyotrophic lateral sclerosis,[14] traumatic brain injury,[15] cerebral ischemia,[16][17] fragile X syndrome,[18] and Rett syndrome.[19] 7,8-DHF also shows efficacy in animal models of age-associated cognitive impairment[20] and enhances memory consolidation and emotional learning in healthy rodents.[21][22] In addition, 7,8-DHF possesses powerful antioxidant activity independent of its actions on the TrkB receptor,[23] and protects against glutamate-induced excitotoxicity,[24] 6-hydroxydopamine-induced dopaminergic neurotoxicity,[25] and oxidative stress-induced genotoxicity.[26] It was also found to block methamphetamine-induced dopaminergic neurotoxicity, an effect which, in contrast to the preceding, was found to be TrkB-dependent.[27]
7,8-DHF has been found to act as a weak aromatase inhibitor in vitro (Ki = 10 μM),[28] though there is evidence to suggest that this might not be the case in vivo.[4] In addition, it has been found to inhibit aldehyde dehydrogenase and estrogen sulfotransferase in vitro (Ki = 35 μM and 1–3 μM, respectively), though similarly to the case of aromatase, these activities have not been confirmed in vivo.[4] Unlike many other flavonoids, 7,8-DHF does not show any inhibitory activity on 17β-hydroxysteroid dehydrogenase.[29] 7,8-DHF has also been observed to possess in vitro antiestrogenic effects at very high concentrations (Ki = 50 μM).[30][31]
A variety of close structural analogs of 7,8-DHF have also been found to act as TrkB agonists in vitro, including diosmetin (5,7,3'-trihydroxy-4'-methoxyflavone), norwogonin (5,7,8-trihydroxyflavone), 4'-dimethylamino-7,8-dihydroxyflavone, 7,8,3'-trihydroxyflavone, 7,3'-dihydroxyflavone, 7,8,2'-trihydroxyflavone, 3,7,8,2'-tetrahydroxyflavone, and 3,7-dihydroxyflavone.[32] The highly hydroxylated gossypetin (3,5,7,8,3',4'-hexahydroxyflavone), conversely, appears to be an antagonist of TrkB in vitro.[32]
A prodrug of 7,8-DHF, R7, is under development for the treatment of Alzheimer's disease.[33]
See also
References
- ↑ Andero, R.; Ressler, K.J. (2012). "Fear extinction and BDNF: translating animal models of PTSD to the clinic". Genes, Brain and Behavior 11 (5): 503–512. doi:10.1111/j.1601-183X.2012.00801.x. ISSN 1601-1848.
- ↑ Colombo, Paola S.; Flamini, Guido; Christodoulou, Michael S.; Rodondi, Graziella; Vitalini, Sara; Passarella, Daniele; Fico, Gelsomina (2014). "Farinose alpine Primula species: Phytochemical and morphological investigations". Phytochemistry 98: 151–159. doi:10.1016/j.phytochem.2013.11.018. ISSN 0031-9422.
- ↑ Cell Press (2015). "Molecule found in tree leaves helps female mice combat weight gain; males unaffected". ScienceDaily. Retrieved 2015-03-19.
- 1 2 3 4 Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, Wilson WD, Xiao G, Blanchi B, Sun YE, Ye K (2010). "A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone". Proc. Natl. Acad. Sci. U.S.A. 107 (6): 2687–92. doi:10.1073/pnas.0913572107. PMC 2823863. PMID 20133810.
- ↑ Liu X, Obianyo O, Chan CB, Huang J, Xue S, Yang JJ, Zeng F, Goodman M, Ye K (2014). "Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in the binding and activation of the TrkB receptor". J. Biol. Chem. 289 (40): 27571–84. doi:10.1074/jbc.M114.562561. PMID 25143381.
- 1 2 Zeng Y, Wang X, Wang Q, Liu S, Hu X, McClintock SM (2013). "Small molecules activating TrkB receptor for treating a variety of CNS disorders". CNS Neurol Disord Drug Targets 12 (7): 1066–77. doi:10.2174/18715273113129990089. PMID 23844685.
- 1 2 Liu X, Chan CB, Jang SW, Pradoldej S, Huang J, He K, Phun LH, France S, Xiao G, Jia Y, Luo HR, Ye K (2010). "A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect". J. Med. Chem. 53 (23): 8274–86. doi:10.1021/jm101206p. PMC 3150605. PMID 21073191.
- ↑ Liu X, Chan CB, Qi Q, Xiao G, Luo HR, He X, Ye K (2012). "Optimization of a small tropomyosin-related kinase B (TrkB) agonist 7,8-dihydroxyflavone active in mouse models of depression". J. Med. Chem. 55 (19): 8524–37. doi:10.1021/jm301099x. PMC 3491656. PMID 22984948.
- ↑ Castello NA, Nguyen MH, Tran JD, Cheng D, Green KN, LaFerla FM (2014). "7,8-Dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss". PLoS ONE 9 (3): e91453. doi:10.1371/journal.pone.0091453. PMC 3948846. PMID 24614170.
- ↑ Chen C, Li XH, Zhang S, Tu Y, Wang YM, Sun HT (2014). "7,8-dihydroxyflavone ameliorates scopolamine-induced Alzheimer-like pathologic dysfunction". Rejuvenation Res 17 (3): 249–54. doi:10.1089/rej.2013.1519. PMID 24325271.
- ↑ Zhang Z, Liu X, Schroeder JP, Chan CB, Song M, Yu SP, Weinshenker D, Ye K (2014). "7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer's disease". Neuropsychopharmacology 39 (3): 638–50. doi:10.1038/npp.2013.243. PMID 24022672.
- ↑ Yang YJ, Li YK, Wang W, Wan JG, Yu B, Wang MZ, Hu B (2014). "Small-molecule TrkB agonist 7,8-dihydroxyflavone reverses cognitive and synaptic plasticity deficits in a rat model of schizophrenia". Pharmacol. Biochem. Behav. 122: 30–6. doi:10.1016/j.pbb.2014.03.013. PMID 24662915.
- ↑ Jiang M, Peng Q, Liu X, Jin J, Hou Z, Zhang J, Mori S, Ross CA, Ye K, Duan W (2013). "Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington's disease". Hum. Mol. Genet. 22 (12): 2462–70. doi:10.1093/hmg/ddt098. PMC 3658168. PMID 23446639.
- ↑ Korkmaz OT, Aytan N, Carreras I, Choi JK, Kowall NW, Jenkins BG, Dedeoglu A (2014). "7,8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis". Neurosci. Lett. 566: 286–91. doi:10.1016/j.neulet.2014.02.058. PMID 24637017.
- ↑ Wu CH, Hung TH, Chen CC, Ke CH, Lee CY, Wang PY, Chen SF (2014). "Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling". PLoS ONE 9 (11): e113397. doi:10.1371/journal.pone.0113397. PMC 4240709. PMID 25415296.
- ↑ Wang B, Wu N, Liang F, Zhang S, Ni W, Cao Y, Xia D, Xi H (2014). "7,8-dihydroxyflavone, a small-molecule tropomyosin-related kinase B (TrkB) agonist, attenuates cerebral ischemia and reperfusion injury in rats". J. Mol. Histol. 45 (2): 129–40. doi:10.1007/s10735-013-9539-y. PMID 24045895.
- ↑ Uluc K, Kendigelen P, Fidan E, Zhang L, Chanana V, Kintner D, Akture E, Song C, Ye K, Sun D, Ferrazzano P, Cengiz P (2013). "TrkB receptor agonist 7, 8 dihydroxyflavone triggers profound gender- dependent neuroprotection in mice after perinatal hypoxia and ischemia". CNS Neurol Disord Drug Targets 12 (3): 360–70. doi:10.2174/18715273113129990061. PMC 3674109. PMID 23469848.
- ↑ Tian M, Zeng Y, Hu Y, Yuan X, Liu S, Li J, Lu P, Sun Y, Gao L, Fu D, Li Y, Wang S, McClintock SM (2015). "7, 8-Dihydroxyflavone induces synapse expression of AMPA GluA1 and ameliorates cognitive and spine abnormalities in a mouse model of fragile X syndrome". Neuropharmacology 89: 43–53. doi:10.1016/j.neuropharm.2014.09.006. PMID 25229717.
- ↑ Johnson RA, Lam M, Punzo AM, Li H, Lin BR, Ye K, Mitchell GS, Chang Q (2012). "7,8-dihydroxyflavone exhibits therapeutic efficacy in a mouse model of Rett syndrome". J. Appl. Physiol. 112 (5): 704–10. doi:10.1152/japplphysiol.01361.2011. PMC 3643819. PMID 22194327.
- ↑ Zeng Y, Lv F, Li L, Yu H, Dong M, Fu Q (2012). "7,8-dihydroxyflavone rescues spatial memory and synaptic plasticity in cognitively impaired aged rats". J. Neurochem. 122 (4): 800–11. doi:10.1111/j.1471-4159.2012.07830.x. PMID 22694088.
- ↑ Bollen E, Vanmierlo T, Akkerman S, Wouters C, Steinbusch HM, Prickaerts J (2013). "7,8-Dihydroxyflavone improves memory consolidation processes in rats and mice". Behav. Brain Res. 257: 8–12. doi:10.1016/j.bbr.2013.09.029. PMID 24070857.
- ↑ Andero R, Heldt SA, Ye K, Liu X, Armario A, Ressler KJ (2011). "Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning". Am J Psychiatry 168 (2): 163–72. doi:10.1176/appi.ajp.2010.10030326. PMC 3770732. PMID 21123312.
- ↑ Foti, Mario; Piattelli, Mario; Baratta, Maria Tiziana; Ruberto, Giuseppe (1996). "Flavonoids, Coumarins, and Cinnamic Acids as Antioxidants in a Micellar System. Structure−Activity Relationship†". Journal of Agricultural and Food Chemistry 44 (2): 497–501. doi:10.1021/jf950378u. ISSN 0021-8561.
- ↑ Chen J, Chua KW, Chua CC, Yu H, Pei A, Chua BH, Hamdy RC, Xu X, Liu CF (2011). "Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity". Neurosci. Lett. 499 (3): 181–5. doi:10.1016/j.neulet.2011.05.054. PMID 21651962.
- ↑ Han X, Zhu S, Wang B, Chen L, Li R, Yao W, Qu Z (2014). "Antioxidant action of 7,8-dihydroxyflavone protects PC12 cells against 6-hydroxydopamine-induced cytotoxicity". Neurochem. Int. 64: 18–23. doi:10.1016/j.neuint.2013.10.018. PMID 24220540.
- ↑ Zhang R, Kang KA, Piao MJ, Ko DO, Wang ZH, Chang WY, You HJ, Lee IK, Kim BJ, Kang SS, Hyun JW (2009). "Preventive effect of 7,8-dihydroxyflavone against oxidative stress induced genotoxicity". Biol. Pharm. Bull. 32 (2): 166–71. doi:10.1248/bpb.32.166. PMID 19182370.
- ↑ Ren Q, Zhang JC, Ma M, Fujita Y, Wu J, Hashimoto K (2014). "7,8-Dihydroxyflavone, a TrkB agonist, attenuates behavioral abnormalities and neurotoxicity in mice after administration of methamphetamine". Psychopharmacology (Berl.) 231 (1): 159–66. doi:10.1007/s00213-013-3221-7. PMID 23934209.
- ↑ Kao YC, Zhou C, Sherman M, Laughton CA, Chen S (1998). "Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study". Environ. Health Perspect. 106 (2): 85–92. doi:10.1289/ehp.9810685. PMC 1533021. PMID 9435150.
- ↑ Le Bail, J.C; Laroche, T; Marre-Fournier, F; Habrioux, G (1998). "Aromatase and 17β-hydroxysteroid dehydrogenase inhibition by flavonoids". Cancer Letters 133 (1): 101–106. doi:10.1016/S0304-3835(98)00211-0. ISSN 0304-3835. PMID 9929167.
- ↑ Le Bail JC, Varnat F, Nicolas JC, Habrioux G (1998). "Estrogenic and antiproliferative activities on MCF-7 human breast cancer cells by flavonoids". Cancer Lett. 130 (1-2): 209–16. doi:10.1016/S0304-3835(98)00141-4. PMID 9751276.
- ↑ Pouget C, Lauthier F, Simon A, Fagnere C, Basly JP, Delage C, Chulia AJ (2001). "Flavonoids: structural requirements for antiproliferative activity on breast cancer cells". Bioorg. Med. Chem. Lett. 11 (24): 3095–7. doi:10.1016/S0960-894X(01)00617-5. PMID 11720850.
- 1 2 Liu, Xia; Chan, Chi-Bun; Jang, Sung-Wuk; Pradoldej, Sompol; Huang, Junjian; He, Kunyan; Phun, Lien H.; France, Stefan; Xiao, Ge; Jia, Yonghui; Luo, Hongbo R.; Ye, Keqiang (2010). "A Synthetic 7,8-Dihydroxyflavone Derivative Promotes Neurogenesis and Exhibits Potent Antidepressant Effect". Journal of Medicinal Chemistry 53 (23): 8274–8286. doi:10.1021/jm101206p. ISSN 0022-2623.
- ↑ Liu, Chaoyang; Chan, Chi Bun; Ye, Keqiang (2016). "7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders". Translational Neurodegeneration 5 (1). doi:10.1186/s40035-015-0048-7. ISSN 2047-9158.
|
---|
| Aglycones | Monohydroxyflavone | |
---|
| Dihydroxyflavones | |
---|
| Trihydroxyflavones | |
---|
| Tetrahydroxyflavones | |
---|
| Pentahydroxyflavones | |
---|
| O-methylated flavones | |
---|
|
---|
| Glycosides | of apigenin | |
---|
| of baicalein | |
---|
| of hypolaetin |
- Hypolaetin 8-glucoside
- Hypolaetin 8-glucuronide
|
---|
| of luteolin | |
---|
|
---|
| Acetylated |
- Artocarpetin A
- Artoindonesianin P
|
---|
| Sulfated glycosides | |
---|
| Polymers | |
---|
| Drugs | |
---|
|
|
---|
| Food antioxidants | |
---|
| Fuel antioxidants | |
---|
| Measurements | |
---|
|
|
---|
| Receptor (ligands) | | Agonists |
- (R)-DPN
- (S)-DPN
- (R,R)-THC
- (S,S)-THC
- 2,8-DHHHC
- 3α-Androstanediol
- 3β-Androstanediol
- 3α-Hydroxytibolone
- 3β-Hydroxytibolone
- 7-Oxo-DHEA
- 7α-Hydroxy-DHEA
- 7β-Hydroxyepiandrosterone
- 8β-VE2
- 16α-Hydroxy-DHEA
- 16α-Hydroxyestrone
- 16α-IE2
- 16α-LE2 (Cpd1471)
- Δ4-Androstenedione
- Δ5-Androstenediol
- 17α-Estradiol (alfatradiol)
- 17β-Estradiol (estradiol)
- Alestramustine
- Almestrone
- Anabolic steroids (prodrugs; e.g., testosterone, metandienone (methandrostenolone), others)
- Anethole
- Anol
- Atrimustine
- Benzestrol
- Bifluranol
- Bisdehydrodoisynolic acid
- Carbestrol
- Chalconoids (e.g., isoliquiritigenin, phloretin, phlorizin (phloridzin), wedelolactone)
- Cloxestradiol
- Conjugated equine estrogens (e.g., sodium equilin sulfate, sodium equilenin sulfate)
- Coumestans (e.g., coumestrol, psoralidin)
- DHEA
- DHEA-S
- Deoxymiroestrol
- Dianethole
- Dianol
- Diarylpropionitrile
- Dieldrin
- Dienestrol
- Dienestrol acetate
- Diethylstilbestrol
- Diethylstilbestrol dipropionate
- Diosgenin
- Doisynoestrol (fenocycline)
- Doisynolic acid
- DY-131 (GSK-9089)
- Endosulfan
- Epiestriol
- Epimestrol
- ERB-196 (WAY-202196)
- Esterified estrogens (e.g., estrone sulfate, equilin sulfate, equilenin sulfate)
- Estetrol
- Estradiol benzoate
- Estradiol butyrylacetate
- Estradiol cypionate
- Estradiol dienanthate
- Estradiol dipropionate
- Estradiol diundecylate
- Estradiol diundecylenate
- Estradiol enanthate
- Estradiol furoate
- Estradiol hemihydrate
- Estradiol hemisuccinate
- Estradiol hexahydrobenzoate
- Estradiol monopropionate
- Estradiol palmitate
- Estradiol pivalate
- Estradiol propoxyphenylpropionate
- Estradiol stearate
- Estradiol succinate
- Estradiol undecylate
- Estradiol valerate
- Estramustine
- Estramustine phosphate
- Estrapronicate
- Estrazinol
- Estriol
- Estriol succinate
- Estriol tripropionate
- Estrobin (DBE)
- Estrofurate
- Estromustine
- Estrone
- Estrone acetate
- Estrone cyanate
- Estrone sulfate
- Estrone tetraacetylglucoside
- Estropipate
- Estropronicate
- Etamestrol (eptamestrol)
- Ethinyl estradiol
- Ethinyl estradiol 3-isopropylsulfonate
- Etynodiol diacetate
- Fenarimol
- Fenestrel
- FERb 033
- Flavonoids (incl. 7,8-DHF, 8-prenylnaringenin, apigenin, baicalein, baicalin, calycosin, catechin, daidzein, daidzin, ECG, EGCG, epicatechin, equol, formononetin, glabrene, glabridin, genistein, genistin, glycitein, kaempferol, liquiritigenin, mirificin, myricetin, naringenin, pinocembrin, prunetin, puerarin, quercetin, tectoridin, tectorigenin)
- Fosfestrol
- Furostilbestrol
- GSK-4716
- Hexestrol
- Hexestrol diacetate
- Hexestrol dicaprylate
- Hexestrol diphosphate
- Hexestrol dipropionate
- Hydroxyestrone diacetate
- Lavender oil
- Lignans (e.g., enterodiol, enterolactone)
- Mestranol
- Metalloestrogens (e.g., cadmium)
- Methallenestril
- Methestrol
- Methestrol dipropionate
- Methiocarb
- Methylestradiol
- Miroestrol
- Moxestrol
- Nilestriol
- Noretynodrel
- Orestrate
- Paroxypropione
- Phytosterols (e.g., β-sitosterol, campesterol, stigmasterol)
- Polyestradiol phosphate
- Prinaberel (ERB-041, WAY-202041)
- Propylpyrazoletriol
- Promestriene
- Resorcylic acid lactones (e.g., zearalanone, zearalenol, zearalenone, zeranal (zearalanol))
- Quadrosilan
- Quinestradol
- Quinestrol
- SKF-82,958
- Stilbenoids (e.g., resveratrol)
- Synthetic xenoestrogens (e.g., alkylphenols, bisphenols (e.g., BPA, BPF, BPS), DDT, parabens, PBBs, PHBA, phthalates, PCBs)
- WAY-166818
- WAY-200070
|
---|
| | |
---|
| Antagonists | |
---|
|
---|
| | |
---|
|
---|
| Enzyme | |
---|
| Others | Precursors | |
---|
| Indirect |
- Antigonadotropins (e.g., androgens, estrogens, progestogens, prolactin)
- Calcitriol (vitamin D)
- GnRH agonists (e,g, GnRH, leuprorelin)
- GnRH antagonists (e.g., cetrorelix)
- Gonadotropins (e.g., FSH, hCG, LH)
- Kisspeptin
- Plasma proteins (ABP, albumin, SHBG)
|
---|
|
---|
| See also: Androgenics • Glucocorticoids • Mineralocorticoids • Progestogenics |
|
|
---|
| CNTF | |
---|
| LNGF | |
---|
| RET | |
---|
| Trk | | |
---|
| |
- Agonists: 3,7-DHF
- 3,7,8,2'-THF
- 4'-DMA-7,8-DHF
- 7,3'-DHF
- 7,8-DHF
- 7,8,2'-THF
- 7,8,3'-THF
- Amitriptyline
- BDNF
- Deoxygedunin
- Diosmetin
- HIOC
- LM22A-4
- N-Acetylserotonin
- NT-3
- NT-4
- Norwogonin (5,7,8-THF)
- R7
- TDP6
|
---|
| | |
---|
|
---|
| Others | |
---|
|