Rectified 6-simplexes


6-simplex

Rectified 6-simplex

Birectified 6-simplex
Orthogonal projections in A6 Coxeter plane

In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex.

There are three unique degrees of rectifications, including the zeroth, the 6-simplex itself. Vertices of the rectified 6-simplex are located at the edge-centers of the 6-simplex. Vertices of the birectified 6-simplex are located in the triangular face centers of the 6-simplex.

Rectified 6-simplex

Rectified 6-simplex
Typeuniform polypeton
Schläfli symbolt1{35}
r{35} = {34,1}
or \left\{\begin{array}{l}3, 3, 3, 3\\3\end{array}\right\}
Coxeter diagrams
Elements

f5 = 14, f4 = 63, C = 140, F = 175, E = 105, V = 21
(χ=0)

Coxeter groupA6, [35], order 5040
Bowers name
and (acronym)
Rectified heptapeton
(ril)
Vertex figure5-cell prism
Circumradius0.845154
Propertiesconvex, isogonal

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S1
6
. It is also called 04,1 for its branching Coxeter-Dynkin diagram, shown as .

Alternate names

Coordinates

The vertices of the rectified 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,0,1,1). This construction is based on facets of the rectified 7-orthoplex.

Images

orthographic projections
Ak Coxeter plane A6 A5 A4
Graph
Dihedral symmetry [7] [6] [5]
Ak Coxeter plane A3 A2
Graph
Dihedral symmetry [4] [3]

Birectified 6-simplex

Birectified 6-simplex
Typeuniform 6-polytope
Schläfli symbol t2{3,3,3,3,3}
2r{35} = {33,2}
or \left\{\begin{array}{l}3, 3, 3\\3, 3\end{array}\right\}
Coxeter symbol 032
Coxeter diagrams
5-faces14 total:
7 t1{3,3,3,3}
7 t2{3,3,3,3}
4-faces84
Cells245
Faces350
Edges210
Vertices35
Vertex figure{3}x{3,3}
Petrie polygonHeptagon
Coxeter groupsA6, [3,3,3,3,3]
Propertiesconvex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S2
6
. It is also called 03,2 for its branching Coxeter-Dynkin diagram, shown as .

Alternate names

Coordinates

The vertices of the birectified 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,1,1,1). This construction is based on facets of the birectified 7-orthoplex.

Images

orthographic projections
Ak Coxeter plane A6 A5 A4
Graph
Dihedral symmetry [7] [6] [5]
Ak Coxeter plane A3 A2
Graph
Dihedral symmetry [4] [3]

Related uniform 6-polytopes

The rectified 6-simplex polytope is the vertex figure of the 7-demicube, and the edge figure of the uniform 241 polytope.

These polytopes are a part of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6 Coxeter plane orthographic projections.

Notes

    References

    External links

    This article is issued from Wikipedia - version of the Wednesday, January 27, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.