Electron affinity (data page)

Main article: Electron affinity

This page deals with the electron affinity as a property of isolated atoms or molecules (i.e. in the gas phase). Solid state electron affinities are not listed here.

Elements

Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated atom (gas phase). (The energy -or electron affinity- is a scalar quantity and the direction of that energy -released- defines a reaction for which the change in energy ΔE is a negative quantity). The electron affinity is also defined in the case of electron capture as E(initial) – E(final) in order to maintain the positive value.[1] The reverse definition is that the electron affinity is the energy required to remove an electron from a gaseous anion (still a positive quantity, but in which the change in energy ΔE is also a positive quantity). Either convention can be used in practice, but must be consistent in according a scalar, i.e. positive number to the electron affinity.

Negative electron affinities can be used in those cases where electron capture requires energy, i.e. when capture can occur only if the impinging electron has a kinetic energy large enough to excite a resonance of the atom-plus-electron system. Conversely electron removal from the anion formed in this way releases energy, which is carried out by the freed electron as kinetic energy. Negative ions formed in these cases are always unstable. They may have lifetimes of the order of microseconds to milliseconds, but they invariably autodetach after some time. The listed value in the table corresponds to a selected low-lying metastable state, which may or may not be the lowest energy resonance. For example, in He there is a metastable state with 0.359 ms lifetime at 19.7 eV above the ground state of He, however there is also a lower energy resonance at 19.4 eV that only has a 10−13 s lifetime.[2]

ZElementNameElectron affinity (eV)Electron affinity (kJ/mol)References
1 1H Hydrogen 0.754 195(19) 72.769(2) [3]
2D Deuterium 0.754 59(8) 72.807(8)
2HeHelium-19.7 1s2s2p 4P5/2, 350 μs lifetime.[2]
3LiLithium0.618 049(2)59.6327(2)[4]
4BeBeryllium-2.4 1s2s2p2 4P3/2, 43 μs lifetime.[2]
5BBoron0.279 723(24)26.989(3)[5]
6 12C Carbon 1.262 122 6(11) 121.776 3(1) [6]
13C 1.262 113 6(12) 121.775 5(2)
7NNitrogen-1.4 2p4 1D, <1 μs lifetime.[2]
8 16O Oxygen 1.461 1134(9) 140.9760(1) [7]
17O 1.461 108(4) 140.9755(4) [8]
18O 1.461 105(3) 140.9752(3)
9FFluorine3.401 1895(25)328.1649(3)[9][10]
10NeNeon - no metastable states[2]
11NaSodium0.547 926(25)52.867(3)[11]
12MgMagnesium - no metastable states[2]
13AlAluminium0.432 83(5)41.762(5)[12]
14SiSilicon1.3895210(7)134.0684(1)[7]
15PPhosphorus0.746 609(9)72.037(1)[13]
16 32S Sulfur 2.077 1040(6) 200.4101(1) [7]
34S 2.077 1044(12) 200.4101(2) [14]
17ClChlorine3.612 724(27)348.575(3)[15]
18ArArgon -11.5 3p54s4p 4S3/2, 260 ns lifetime[2]
19KPotassium0.501 459(12)48.383(2)[16]
20CaCalcium0.024 55(10)2.37(1)[17]
21ScScandium0.188(20)18(2)[18]
22TiTitanium0.084(9)8(1)[19]
23VVanadium0.526(12)50.8(12)[20]
24CrChromium0.675 84(12)65.21(2)[21]
25MnManganese-1 (theoretical) [2]
26FeIron0.151(3)14.6(3)[22]
27CoCobalt0.6633(6)64.00(6) [23]
28NiNickel1.157 16(12)111.65(2)
29CuCopper1.235 78(4)119.235(4)[21]
30ZnZinc - No stable negative ion.[2]
31GaGallium0.43(3)41(3)[24]
32GeGermanium1.232 6764(12)118.9352(2)[25]
33AsArsenic0.8048(2)77.65(2)[26]
34SeSelenium2.020 6046(11)194.9587(2)[27]
35BrBromine3.363 590(3)324.5371(3)[9]
36KrKrypton - no metastable states[2]
37RbRubidium0.485 916(20)46.884(2)[28]
38SrStrontium0.052 06(6)5.023(6)[29]
39YYttrium0.307(12)29.6(12)[18]
40ZrZirconium0.427(14)41.2(14)[20]
41NbNiobium0.91740(6)88.516(7)[30]
42MoMolybdenum0.7473(3)72.10(3)[21]
43TcTechnetium ? May be unstable like Mn.[2]
44RuRuthenium1.046 38(25)100.96(3)[31]
45RhRhodium1.142 89(20)110.27(2) [23]
46PdPalladium0.562 14(12)54.24(2)
47AgSilver1.304 47(3)125.862(3)[21]
48CdCadmium - No stable negative ion.[2]
49InIndium0.383 92(6)37.043(6)[32]
50SnTin1.112 070(2)107.2984(2)[33]
51SbAntimony1.047 401(18)101.059(2)[34]
52TeTellurium1.970 876(7)190.161(1)[35]
53IIodine3.059 0463(38)295.1531(4)[36]
54XeXenon-0.056(10) (theoretical) [2]
55CsCaesium0.471 630(25)45.505(3)[11][37]
56BaBarium0.144 62(6)13.954(6)[38]
57LaLanthanum0.47(2)45(2)[39]
58CeCerium0.57(2)55(2)[40]
59PrPraseodymium0.962(24)93(3)[2]
60NdNeodymium0.162 (theoretical) [41]
61PmPromethium0.129 (theoretical)
62SmSamarium0.162 (theoretical)
63EuEuropium0.116(13)11(1)[42]
64GdGadolinium0.137 (theoretical) [41]
65TbTerbium0.436 (theoretical)
66DyDysprosium0.352 (theoretical)
67HoHolmium0.338 (theoretical)
68ErErbium0.312 (theoretical)
69TmThulium1.029(22)99(3)[43]
70YbYtterbium0.00(3) [2]
71LuLutetium0.346(14)33.4(15)[44][45]
72HfHafnium0.114 (theoretical) [2][46]
73TaTantalum0.323(12)31(2)[20]
74WTungsten0.816 26(8)78.76(1)[47]
75ReRhenium0.15(10)14(10)[48] May be unstable like Mn.[2]
76OsOsmium1.077 80(12)103.99(2)[49]
77IrIridium1.564 36(15)150.94(2) [50]
78PtPlatinum2.125 10(5)205.041(5)
79AuGold2.308 610(25)222.747(3)[51]
80HgMercury - No stable negative ion.[2]
81TlThallium0.377(13)36.4(14)[52]
82PbLead0.364(8)35(1)[53]
83BiBismuth0.942 362(13)90.924(2)[54]
84PoPolonium1.405(62) (theoretical)135.5(60) (theoretical) [55]
85AtAstatine2.42(12) (theoretical)233.1(11) (theoretical)
86RnRadon
87FrFrancium0.491(5) (theoretical) [56]
88RaRadium
89AcActinium
90ThThorium
91PaProtactinium
92UUranium
93NpNeptunium
94PuPlutonium
95AmAmericium
96CmCurium
97BkBerkelium
98CfCalifornium
99EsEinsteinium
100FmFermium
101MdMendelevium
102NoNobelium
103LrLawrencium
104RfRutherfordium
105DbDubnium
106SgSeaborgium
107BhBohrium
108HsHassium
109MtMeitnerium
110DsDarmstadtium
111RgRoentgenium
112CnCopernicium
113UutUnuntrium
114FlFlerovium
115UupUnunpentium
116LvLivermorium
117UusUnunseptium2.6 or 1.8 (theoretical) [57]
118UuoUnunoctium0.056(10) (theoretical) [58]
119UueUnunennium0.662 (theoretical) [56]
120UbnUnbinilium

Molecules

The electron affinities Eea of some molecules are given in the table below, from the lightest to the heaviest. Many more have been listed by Rienstra-Kiracofe et al. (2002). The electron affinities of the radicals OH and SH are the most precisely known of all molecular electron affinities.

MoleculeNameEea (eV)Eea (kJ/mol)References
Diatomics
16OHHydroxyl1.827 6487(11)176.341(2)Goldfarb et al. (2005)
16OD 1.825 53(4)176.137(5)Schulz et al. (1982)
C2Dicarbon3.269(6)315.4(6)Ervin & Lineberger (1991)
BOBoron oxide2.508(8)242.0(8)Wenthold et al. (1997)
NONitric oxide0.026(5)2.5(5)Travers, Cowles & Ellison (1989)
O2Dioxygen0.450(2)43.42(20)Schiedt & Weinkauf (1995)
32SHSulfhydryl2.314 7282(17)223.337(2)Chaibi et al. (2006)
F2Difluorine3.08(10)297(10)Janousek & Brauman (1979)
Cl2Dichlorine2.35(8)227(8)Janousek & Brauman (1979)
Br2Dibromine2.53(8)244(8)Janousek & Brauman (1979)
I2Diiodine2.524(5)243.5(5)Zanni et al. (1997)
IBrIodine bromide2.512(3)242.4(4)Sheps, Miller & Lineberger (2009)
LiClLithium chloride0.593(10)57.2(10)Miller et al. (1986)
FeOIron(II) oxide1.4950(5)144.25(6)Kim, Weichman & Neumark (2015)
Triatomics
NO2Nitrogen dioxide2.273(5)219.3(5)Ervin, Ho & Lineberger (1988)
O3Ozone2.1028(25)202.89(25)Novick et al. (1979)
SO2Sulfur dioxide1.107(8)106.8(8)Nimlos & Ellison (1986)
Larger polyatomics
CH2CHOVinyloxy1.8248(+2-6)176.07(+3-7)Rienstra-Kiracofe et al. (2002) after Mead et al. (1984)
C6H6Benzene-0.70(14)−68(14)Ruoff et al. (1995)
C6H4O2p-Benzoquinone1.860(5)179.5(6)Schiedt & Weinkauf (1999)
BF3Boron trifluoride2.65(10)256(10)Page & Goode (1969)
HNO3Nitric acid0.57(15)55(14)Janousek & Brauman (1979)
CH3NO2Nitromethane0.172(6)16.6(6)Adams et al. (2009)
POCl3Phosphoryl chloride1.41(20)136(20)Mathur et al. (1976)
SF6Sulfur hexafluoride1.03(5)99.4(49)Troe, Miller & Viggiano (2012)
C2(CN)4Tetracyanoethylene3.17(20)306(20)Chowdhury & Kebarle (1986)
WF6Tungsten hexafluoride3.5(1)338(10)George & Beauchamp (1979)
UF6Uranium hexafluoride5.06(20)488(20)NIST chemistry webbook after Borshchevskii et al. (1988)
C60Buckminsterfullerene2.6835(6)258.92(6)Huang et al. (2014)

Bibliography

Specific molecules

References

  1. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006) "Electron affinity".
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Andersen, T. (2004). "Atomic negative ions: Structure, dynamics and collisions". Physics Reports 394 (4–5): 157–313. doi:10.1016/j.physrep.2004.01.001.
  3. Lykke K.R., Murray K.K. and Lineberger W.C. (1991). Threshold Photodetachment of H. Phys. Rev. A 43:6104–7. doi:10.1103/PhysRevA.43.6104
  4. Haeffler G., Hanstorp D., Kiyan I., Klinkmüller A.E., Ljungblad U. and Pegg D.J. (1996a). Electron affinity of Li: A state-selective measurement. Phys. Rev. A 53:4127–31 doi:10.1103/PhysRevA.53.4127.
  5. Scheer M., Bilodeau R.C. and Haugen H.K. (1998). Negative ion of boron: An experimental study of the 3P ground state. Phys. Rev. Lett. 80:2562–65 doi:10.1103/PhysRevLett.80.2562.
  6. Bresteau D., Drag C. and Blondel C. (2016). Isotope shift of the electron affinity of carbon measured by photodetachment microscopy. Phys. Rev. A 93 013414 doi:10.1103/PhysRevA.93.013414.
  7. 1 2 3 Chaibi, W.; Peláez, R. J.; Blondel, C.; Drag, C.; Delsart, C. (2010). "Effect of a magnetic field in photodetachment microscopy". The European Physical Journal D 58: 29. doi:10.1140/epjd/e2010-00086-7.
  8. Blondel C., Delsart C., Valli C., Yiou S., Godefroid M.R. & Van Eck S. (2001). Electron affinities of 16 O, 17 O, 18 O, the fine structure of 16O-, and the hyperfine structure of 17O-. Phys. Rev. A 64 052504 doi:10.1103/PhysRevA.64.052504.
  9. 1 2 Blondel C., Cacciani P., Delsart C. and Trainham, R. (1989). High Resolution Determination of the Electron Affinity of Fluorine and Bromine using Crossed Ion and Laser Beams. Phys. Rev. A 40:3698–3701 doi:10.1103/PhysRevA.40.3698.
  10. Blondel C., Delsart C. and Goldfarb F. (2001). Electron spectrometry at the μeV level and the electron affinities of Si and F. Journal of Physics B 34:L281–88 doi:10.1088/0953-4075/34/9/101.
  11. 1 2 Hotop H. and Lineberger W.C. (1985). "Binding energies in atomic negative ions. II". Journal of Physical and Chemical Reference Data 14:731 doi:10.1063/1.555735.
  12. Scheer M., Bilodeau R.C., Thøgersen J. and Haugen H.K. (1998b). Threshold Photodetachment of Al: Electron Affinity and Fine Structure. Phys. Rev. A 57:R1493–96 doi:10.1103/PhysRevA.57.R1493.
  13. Peláez R.J., Blondel C., Vandevraye M., Drag C. and Delsart C. (2011). Photodetachment microscopy to an excited spectral term and the electron affinity of phosphorus. J. Phys. B 44, 195009 doi:10.1088/0953-4075/44/19/195009
  14. Carette T., Drag C., Scharf O., Blondel C., Delsart C., Fischer C. F. & Godefroid M. (2010). Isotope shift in the sulfur electron affinity: Observation and theory. Phys. Rev. A 81 042522 doi:10.1103/PhysRevA.81.042522.
  15. Berzinsh U., Gustafsson M., Hanstorp D., Klinkmüller A., Ljungblad U. and Martensson-Pendrill A.M. (1995). Isotope shift in the electron affinity of chlorine. Phys. Rev. A 51, 231 doi:10.1103/PhysRevA.51.231
  16. Andersson K.T., Sandstrom J., Kiyan I.Y., Hanstorp D. and Pegg D.J. (2000). Measurement of the electron affinity of potassium. Phys. Rev. A 62:022503 doi:10.1103/PhysRevA.62.022503.
  17. Petrunin V.V., Andersen H.H., Balling P. and Andersen T. (1996). Structural Properties of the Negative Calcium Ion: Binding Energies and Fine-structure Splitting. Phys. Rev. Lett. 76:744–47 doi:10.1103/PhysRevLett.76.744.
  18. 1 2 Feigerle C.S., Herman Z. and Lineberger W.C. (1981). Laser Photoelectron Spectroscopy of Sc- and Y-: A Determination of the Order of Electron Filling in Transition Metal Anions. Journal of Electron Spectroscopy and Related Phenomena 23:441–50 doi:10.1016/0368-2048(81)85050-5
  19. Ilin R.N., Sakharov V.I. and Serenkov I.T. (1987). "Study of Titanium Negative Ion Using Method of Electron Detachment by an Electric Field". Optics and Spectroscopy (USSR) 62:578.
  20. 1 2 3 Feigerle C.S., Corderman R.R., Bobashev S.V. and Lineberger W.C. (1981). Binding energies and structure of transition metal negative ions. J. Chem. Phys. 74, 1580 doi:10.1063/1.441289.
  21. 1 2 3 4 Bilodeau R.C., Scheer M. and Haugen H.K. (1998). Infrared Laser Photodetachment of Transition Metal Negative Ions: Studies on Cr, Mo, Cu, and Ag. Journal of Physics B 31:3885–91 doi:10.1088/0953-4075/31/17/013.
  22. Leopold D.G. and Lineberger W.C. (1986). A study of the low-lying electronic states of Fe2 and Co2 by negative ion photoelectron spectroscopy. Journal of Chemical Physics 85:51–55 doi:10.1063/1.451630.
  23. 1 2 Scheer M., Brodie C.A., Bilodeau R.C., Haugen H.K. (1998c). Laser spectroscopic measurements of binding energies and fine-structure splittings of Co, Ni, Rh, and Pd. Phys. Rev. A 58:2051–62 doi:10.1103/PhysRevA.58.2051
  24. Williams W.W., Carpenter D.L., Covington A.M., Koepnick M.C., Calabrese D. and Thompson J.S. (1998a). Laser photodetachment electron spectrometry of Ga. Journal of Physics B 31:L341–45 doi:10.1088/0953-4075/31/8/003.
  25. Bresteau D., Babilotte Ph., Drag C. and Blondel C. (2015). Intra-cavity photodetachment microscopy and the electron affinity of germanium. J. Phys. B: At. Mol. Opt. Phys. 48 125001 doi:10.1088/0953-4075/48/12/125001.
  26. Walter C. W., Gibson N. D., Field R. L., Snedden A. P., Shapiro J. Z., Janczak C. M. and Hanstorp D. (2009). Electron affinity of arsenic and the fine structure of As measured using infrared photodetachment threshold spectroscopy. Phys. Rev. A 80, 014501
  27. Vandevraye M., Drag C. and Blondel C. (2012). Electron affinity of selenium measured by photodetachment microscopy. Phys. Rev. A 85:015401 doi:10.1103/PhysRevA.85.015401.
  28. Frey P., Breyer F. and Hotop H. (1978). High Resolution Photodetachment from the Rubidium Negative Ion around the Rb(5p1/2) Threshold. Journal of Physics B 11:L589–94 doi:10.1088/0022-3700/11/19/005.
  29. Andersen H.H., Petrunin V.V., Kristensen P. and Andersen T. (1997). Structural properties of the negative strontium ion: Binding energy and fine-structure splitting. Phys. Rev. A 55:3247–49 doi:10.1103/PhysRevA.55.3247.
  30. Luo Z., Chen X., Li J. & Ning C. (2016). Precision measurement of the electron affinity of niobium. Phys. Rev. A 93, 020501(R) doi:10.1103/PhysRevA.93.020501
  31. Norquist P.L., Beck D.R., Bilodeau R.C., Scheer M., Srawley R.A. and Haugen H.K. (1999). Theoretical and experimental binding energies for the d7s2 4F levels in Ru, including calculated hyperfine structure and M1 decay rates. Phys. Rev. A 59:1896–1902 doi:10.1103/PhysRevA.59.1896.
  32. Walter C.W., Gibson N.D., Carman D.J., Li Y.-G. and Matyas D.J. (2010). Electron affinity of indium and the fine structure of In- measured using infrared photodetachment threshold spectroscopy. Phys. Rev. A 82, 032507 doi:10.1103/PhysRevA.82.032507
  33. Vandevraye, M.; Drag, C.; Blondel, C. (2013). "Electron affinity of tin measured by photodetachment microscopy". Journal of Physics B: Atomic, Molecular and Optical Physics 46 (12): 125002. doi:10.1088/0953-4075/46/12/125002.
  34. Scheer M., Haugen H.K. and Beck D.R. (1997). Single- and Multiphoton Infrared Laser Spectroscopy of Sb: A Case Study. Phys. Rev. Lett. 79:4104–7 doi:10.1103/PhysRevLett.79.4104.
  35. Haeffler G., Klinkmüller A.E., Rangell J., Berzinsh U. and Hanstorp D. (1996b). The Electron Affinity of Tellurium. Z. Phys. D 38:211 doi:10.1007/s004600050085.
  36. 1 2 Peláez R.J., Blondel C., Delsart C. and Drag C. (2009) J. Phys. B 42 125001 doi:10.1088/0953-4075/42/12/125001
  37. Scheer M., Thøgersen J., Bilodeau R.C., Brodie C.A. and Haugen H.K. (1998d). Experimental Evidence that the 6s6p 3PJ States of Cs are Shape Resonances. Phys. Rev. Lett. 80:684–87 doi:10.1103/PhysRevLett.80.684.
  38. Petrunin V.V., Volstad J.D., Balling P., Kristensen K. and Andersen T. (1995). Resonant Ionization Spectroscopy of Ba: Metastable and Stable Ions. Phys. Rev. Lett. 75:1911–14 doi:10.1103/PhysRevLett.75.1911.
  39. Covington A.M., Calabrese D., Thompson J.S. and Kvale T.J. (1998). Measurement of the electron affinity of lanthanum, Journal of Physics B 31:L855–60 doi:10.1088/0953-4075/31/20/002.
  40. Felton J., Ray M. & Jarrold C.C. (2014). Measurement of the electron affinity of atomic Ce. Phys. Rev. A 89, 033407 doi:10.1103/PhysRevA.89.033407.
  41. 1 2 Felfli, Z.; Msezane, A.; Sokolovski, D. (2009). "Resonances in low-energy electron elastic cross sections for lanthanide atoms". Physical Review A 79. doi:10.1103/PhysRevA.79.012714.
  42. Cheng S.B., and Castleman A. W., Jr. (2015). Direct experimental observation of weakly-bound character of the attached electron in europium anion. Sci. Rep. 5 12414 doi:10.1038/srep12414.
  43. Davis V.T. and Thompson J.S. (2002b). Measurement of the electron affinity of thulium. Phys. Rev. A 65:010501 doi:10.1103/PhysRevA.65.010501.
  44. Davis V.T. and Thompson J.S. (2001). Measurement of the electron affinity of lutetium. Journal of Physics B 34:L433–37 doi:10.1088/0953-4075/34/14/102.
  45. Davis V.T., Thompson J. and Covington A. (2005). Laser photodetachment electron spectroscopy studies of heavy atomic anions. Nucl. Instrum. Meth. B 241 118 doi:10.1016/j.nimb.2005.07.073.
  46. Pan, Lin; Beck, Donald R. (21 December 2009). "Calculations of Hf electron affinity and photodetachment partial cross sections" (PDF). Journal of Physics B: Atomic, Molecular, and Optical Physics (IOP Publishing Ltd) 43 (2). Retrieved 22 September 2015.
  47. Lindahl A.O. et al. (2010). The electron affinity of tungsten. Eur. Phys. J. D 60, 219 doi:10.1140/epjd/e2010-00199-y
  48. Scheer M. D. & Fine J. (1967). Positive and Negative Self‐Surface Ionization of Tungsten and Rhenium. J. Chem. Phys. 46, 3998-4003 doi:10.1063/1.1840476.
  49. Bilodeau R.C. and Haugen H.K. (2000). "Experimental studies of Os: Observation of a bound-bound electric dipole transition in an atomic negative ion". Phys. Rev. Lett. 85:534–37 doi:10.1103/PhysRevLett.85.534.
  50. Bilodeau R.C., Scheer M., Haugen H.K. and Brooks R.L. (1999). Near-threshold Laser Spectroscopy of Iridium and Platinum Negative Ions: Electron Affinities and the Threshold Law. Phys. Rev. A 61:012505 doi:10.1103/PhysRevA.61.012505.
  51. Andersen T., Haugen H.K. and Hotop H. (1999). Binding Energies in Atomic Negative Ions: III. J. Phys. Chem. Ref. Data 28, 1511 doi:10.1063/1.556047.
  52. Carpenter D.L., Covington A.M. and Thompson J.S. (2000). Laser Photodetachment Electron Spectroscopy of Tl. Phys. Rev. A 61:042501 doi:10.1103/PhysRevA.61.042501.
  53. Feigerle C.S., Corderman R.R. and Lineberger W.C. (1981). Electron affinities of B, AI, Bi, and Pb. J. Chem. Phys. 74, 1513 doi:10.1063/1.441174.
  54. Bilodeau R.C. and Haugen H.K. (2001). " Electron affinity of Bi using infrared laser photodetachment threshold spectroscopy". Phys. Rev. A 64:024501 doi:10.1103/PhysRevA.64.024501.
  55. Li Junqin, Zhao Zilong, Andersson Martin, Zhang Xuemei & Chen Chongyang (2012). Theoretical study for the electron affinities of negative ions with the MCDHF method. J. Phys. B: At. Mol. Opt. Phys. 45, 165004 doi:10.1088/0953-4075/45/16/165004.
  56. 1 2 Landau A., Eliav E., Ishikawa Y. and Kaldor U., "Benchmark calculations of electron affinities of the alkali atoms sodium to eka-francium (element 119)". J. Chem. Phys. 115 2389 (2001) doi:10.1063/1.1386413.
  57. Hoffman, Darleane C; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
  58. Eliav, Ephraim; Kaldor, Uzi; Ishikawa, Y; Pyykkö, P (1996). "Element 118: The First Rare Gas with an Electron Affinity". Physical Review Letters 77 (27): 5350–5352. Bibcode:1996PhRvL..77.5350E. doi:10.1103/PhysRevLett.77.5350. PMID 10062781.
  59. According to NIST as concerns Boron trifluoride, the Magnetron method, lacking mass analysis, is not considered reliable.

See also

This article is issued from Wikipedia - version of the Friday, February 19, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.