List of elements by stability of isotopes
- This is a list of the chemical elements and their isotopes, listed in terms of stability.
Atomic nuclei consist of protons and neutrons, which attract each other through the nuclear force, while protons repel each other via the electric force due to their positive charge. These two forces compete, leading to some combinations of neutrons and protons being more stable than others. Neutrons stabilize the nucleus, because they attract protons, which helps offset the electrical repulsion between protons. As a result, as the number of protons increases, an increasing ratio of neutrons to protons is needed to form a stable nucleus; if too many or too few neutrons are present with regard to the optimum ratio, the nucleus becomes unstable and subject to certain types of nuclear decay. Unstable isotopes decay through various radioactive decay pathways, most commonly alpha decay, beta decay, or electron capture. Many other rare types of decay, such as spontaneous fission or cluster decay are known. (See radioactive decay for details.)
Of the first 83 elements in the periodic table, 80 have isotopes considered to be stable.[1] Technetium, promethium (atomic numbers 43 and 61, respectively[a]) and all the elements with an atomic number over 82 only have isotopes that are known to decompose through radioactive decay. No undiscovered elements are expected to be stable, therefore lead is considered the heaviest stable element. However, it is possible that some isotopes that are now considered stable will be revealed to decay with extremely long half-lives (as was the case in 2003 with bismuth-209, which had been considered to be stable).[2][3] This list depicts what is agreed upon by the consensus of the scientific community as of 2008.[1]
For each of the 80 stable elements, the number of the stable isotopes is given. Only 90 isotopes are expected to be perfectly stable, and an additional 164 are energetically unstable, but have never been observed to decay. Thus, 254 isotopes (nuclides) are stable by definition (including tantalum-180m, for which no decay has yet been observed). Those that may in the future be found to be radioactive, are expected to have half-lives longer than 1022 years (for example, xenon-134).
Of the chemical elements, only one element (tin) has 10 such stable isotopes, one (xenon) has eight isotopes, four have seven isotopes, nine have six isotopes, nine have five isotopes, nine have four isotopes, five have three stable isotopes, 16 have two stable isotopes, and 26 have a single stable isotope.[1]
Additionally, about 29 nuclides of the naturally occurring elements have unstable isotopes with a half-life larger than the age of the Solar System (~109 years or more).[b] An additional six nuclides have half-lives longer than 80 million years, which is far less than the age of the solar system, but long enough for some of them to have survived. These 35 radioactive naturally occurring nuclides comprise the radioactive primordial nuclides. The total number of primordial nuclides is then 253 (the stable nuclides) plus the 35 radioactive primordial nuclides, for a total of 288 primordial nuclides. This number is subject to change if new shorter-lived primordials are identified on Earth.
One of the primordial nuclides is Ta-180m, which is predicted to have a half-life in excess of 1015 years, but has never been observed to decay. The even longer half-life of 7.7 x 1024 years of tellurium-128 was measured by a unique method of detecting its radiogenic daughter xenon-128 and is the longest known experimentally measured half-life.[4] Another notable example is the only naturally occurring isotope of bismuth, which has been predicted to be unstable with a very long half-life, but has been observed to decay. Because of their long half-lives, such isotopes are still found on Earth in various quantities, and together with the stable isotopes they are called primordial isotopes. All the primordial isotopes are given in order of their decreasing abundance on Earth.[c]. For a list of primordial nuclides in order of half-life, see list of nuclides.
There are 80 elements with at least one stable isotope, but 114 to 118 chemical elements are known, depending on official confirmation (118 are given in this table). All elements to element 94 are found in nature, and the remainder of the discovered elements are artificially produced, with isotopes all known to be highly radioactive with relatively short half-lives (see below). The elements in this list are ordered according to the lifetime of their most stable isotope.[1] Of these, four elements (bismuth, thorium, uranium and plutonium) are primordial because they have half-lives long enough to still be found on the Earth,[d] while all the others are produced either by radioactive decay or are synthesized in laboratories and nuclear reactors. Only 13 of the 38 known-but-unstable elements (assuming the total number of elements is 118) have isotopes with a half-life of at least 100 years. Every known isotope of the remaining 25 elements is highly radioactive; these are used in academic research and sometimes in industry and medicine.[e] Some of the heavier elements in the periodic table may be revealed to have yet-undiscovered isotopes with longer lifetimes than those listed here.[f]
About 339 nuclides are found naturally on Earth. These comprise 254 stable isotopes, and with the addition of the 34 long-lived radioisotopes with half-lives longer than 80 million years, a total of 288 primordial nuclides, as noted above. The nuclides found naturally comprise not only the 288 primordials, but also include about 51 more short-lived isotopes (defined by a half-life less than 80 million years, too short to have survived from the formation of the Earth) that are daughters of primordial isotopes (such as radium from uranium); or else are made by energetic natural processes, such as carbon-14 made from atmospheric nitrogen by bombardment from cosmic rays.
Elements by number of primordial isotopes
An even number of protons or neutrons is more stable (higher binding energy) because of pairing effects, so even-even nuclides are much more stable than odd-odd. One effect is that there are few stable odd-odd nuclides: in fact only five are stable, with another four having half-lives longer than a billion years.
Another effect is to prevent beta decay of many even-even nuclides into another even-even nuclide of the same mass number but lower energy, because decay proceeding one step at a time would have to pass through an odd-odd nuclide of higher energy. (Double beta decay directly from even-even to even-even, skipping over an odd-odd nuclide, is only occasionally possible, and is a process so strongly hindered that it has a half-life greater than a billion times the age of the universe.) This makes for a larger number of stable even-even nuclides, up to three for some mass numbers, and up to seven for some atomic (proton) numbers and at least four for all stable even-Z elements beyond iron except for strontium.
Since a nucleus with an odd number of protons is relatively less stable, odd-numbered elements tend to have fewer stable isotopes. Of the 26 "monoisotopic" elements that have only a single stable isotope, all but one have an odd atomic number — the single exception being beryllium. In addition, no odd-numbered element has more than two stable isotopes, while every even-numbered element with stable isotopes, except for helium, beryllium, and carbon, has at least three.
Tables
The following tables give the elements with primordial nuclides, which means that the element may still be identified on Earth from natural sources, having been present since the Earth was formed out of the solar nebula. Thus, none are shorter-lived daughters of longer-lived parental primordials, such as radon.
The tables of elements are sorted in order of decreasing number of nuclides associated with each element. (For a list sorted entirely in terms of half-lives of nuclides, with mixing of elements, see List of nuclides.) Stable and unstable (marked decays) nuclides are given, with symbols for unstable (radioactive) nuclides in italics. Note that the sorting does not quite give the elements purely in order of stable nuclides, since some elements have a larger number of long-lived unstable nuclides, which place them ahead of elements with a larger number of stable nuclides. By convention, nuclides are counted as "stable" if they have never been observed to decay by experiment or from observation of decay products (extremely long lived nuclides unstable only in theory, such as tantalum-180m, are counted as stable).
The first table is for even-atomic numbered elements, which tend to have far more primordial nuclides, due to the stability conferred by proton-proton pairing. A second separate table is given for odd-atomic numbered elements, which tend to have far fewer stable and long-lived (primordial) unstable nuclides.
Z |
Element |
Stable [1] |
Decays [b][1] |
unstable in italics[b] odd neutron number in pink | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50 | tin | 10 | — | 120Sn | 118Sn | 116Sn | 119Sn | 117Sn | 124Sn | 122Sn | 112Sn | 114Sn | 115Sn |
54 | xenon | 8 | 1 | 132Xe | 129Xe | 131Xe | 134Xe | 136Xe | 130Xe | 128Xe | 124Xe | 126Xe | |
48 | cadmium | 6 | 2 | 114Cd | 112Cd | 111Cd | 110Cd | 113Cd | 116Cd | 106Cd | 108Cd | ||
52 | tellurium | 6 | 2 | 130Te | 128Te | 126Te | 125Te | 124Te | 122Te | 123Te | 120Te | ||
62 | samarium | 5 | 3 | 152Sm | 154Sm | 147Sm | 149Sm | 148Sm | 150Sm | 144Sm | 146Sm | ||
44 | ruthenium | 7 | — | 102Ru | 104Ru | 101Ru | 99Ru | 100Ru | 96Ru | 98Ru | |||
66 | dysprosium | 7 | — | 164Dy | 162Dy | 163Dy | 161Dy | 160Dy | 158Dy | 156Dy | |||
70 | ytterbium | 7 | — | 174Yb | 172Yb | 173Yb | 171Yb | 176Yb | 170Yb | 168Yb | |||
80 | mercury | 7 | — | 202Hg | 200Hg | 199Hg | 201Hg | 198Hg | 204Hg | 196Hg | |||
42 | molybdenum | 6 | 1 | 98Mo | 96Mo | 95Mo | 92Mo | 100Mo | 97Mo | 94Mo | |||
56 | barium | 6 | 1 | 138Ba | 137Ba | 136Ba | 135Ba | 134Ba | 132Ba | 130Ba | |||
64 | gadolinium | 6 | 1 | 158Gd | 160Gd | 156Gd | 157Gd | 155Gd | 154Gd | 152Gd | |||
76 | osmium | 6 | 1 | 192Os | 190Os | 189Os | 188Os | 187Os | 186Os | 184Os | |||
60 | neodymium | 5 | 2 | 142Nd | 144Nd | 146Nd | 143Nd | 145Nd | 148Nd | 150Nd | |||
36 | krypton | 6 | — | 84Kr | 86Kr | 82Kr | 83Kr | 80Kr | 78Kr | ||||
46 | palladium | 6 | — | 106Pd | 108Pd | 105Pd | 110Pd | 104Pd | 102Pd | ||||
68 | erbium | 6 | — | 166Er | 168Er | 167Er | 170Er | 164Er | 162Er | ||||
20 | calcium | 5 | 1 | 40Ca | 44Ca | 42Ca | 48Ca | 43Ca | 46Ca | ||||
34 | selenium | 5 | 1 | 80Se | 78Se | 76Se | 82Se | 77Se | 74Se | ||||
72 | hafnium | 5 | 1 | 180Hf | 178Hf | 177Hf | 179Hf | 176Hf | 174Hf | ||||
78 | platinum | 5 | 1 | 195Pt | 194Pt | 196Pt | 198Pt | 192Pt | 190Pt | ||||
22 | titanium | 5 | — | 48Ti | 46Ti | 47Ti | 49Ti | 50Ti | |||||
28 | nickel | 5 | — | 58Ni | 60Ni | 62Ni | 61Ni | 64Ni | |||||
30 | zinc | 5 | — | 64Zn | 66Zn | 68Zn | 67Zn | 70Zn | |||||
32 | germanium | 4 | 1 | 74Ge | 72Ge | 70Ge | 73Ge | 76Ge | |||||
40 | zirconium | 4 | 1 | 90Zr | 94Zr | 92Zr | 91Zr | 96Zr | |||||
74 | tungsten | 4 | 1 | 184W | 186W | 182W | 183W | 180W | |||||
16 | sulfur | 4 | — | 32S | 34S | 33S | 36S | ||||||
24 | chromium | 4 | — | 52Cr | 53Cr | 50Cr | 54Cr | ||||||
26 | iron | 4 | — | 56Fe | 54Fe | 57Fe | 58Fe | ||||||
38 | strontium | 4 | — | 88Sr | 86Sr | 87Sr | 84Sr | ||||||
58 | cerium | 4 | — | 140Ce | 142Ce | 138Ce | 136Ce | ||||||
82 | lead | 4 | — | 208Pb | 206Pb | 207Pb | 204Pb | ||||||
8 | oxygen | 3 | — | 16O | 18O | 17O | |||||||
10 | neon | 3 | — | 20Ne | 22Ne | 21Ne | |||||||
12 | magnesium | 3 | — | 24Mg | 26Mg | 25Mg | |||||||
14 | silicon | 3 | — | 28Si | 29Si | 30Si | |||||||
18 | argon | 3 | — | 40Ar | 36Ar | 38Ar | |||||||
2 | helium | 2 | — | 4He | 3He | ||||||||
6 | carbon | 2 | — | 12C | 13C | ||||||||
92 | uranium | 0 | 2 | 238U[d] | 235U | ||||||||
4 | beryllium | 1 | — | 9Be | |||||||||
90 | thorium | 0 | 1 | 232Th | |||||||||
94 | plutonium | 0 | 1 | 244Pu |
Z |
Element |
Stab |
Dec |
unstable: italics odd N in pink | ||
---|---|---|---|---|---|---|
19 | potassium | 2 | 1 | 39K | 41K | 40K |
1 | hydrogen | 2 | — | 1H | 2H | |
3 | lithium | 2 | — | 7Li | 6Li | |
5 | boron | 2 | — | 11B | 10B | |
7 | nitrogen | 2 | — | 14N | 15N | |
17 | chlorine | 2 | — | 35Cl | 37Cl | |
29 | copper | 2 | — | 63Cu | 65Cu | |
31 | gallium | 2 | — | 69Ga | 71Ga | |
35 | bromine | 2 | — | 79Br | 81Br | |
47 | silver | 2 | — | 107Ag | 109Ag | |
51 | antimony | 2 | — | 121Sb | 123Sb | |
73 | tantalum | 2 | — | 181Ta | 180mTa | |
77 | iridium | 2 | — | 193Ir | 191Ir | |
81 | thallium | 2 | — | 205Tl | 203Tl | |
23 | vanadium | 1 | 1 | 51V | 50V | |
37 | rubidium | 1 | 1 | 85Rb | 87Rb | |
49 | indium | 1 | 1 | 115In | 113In | |
57 | lanthanum | 1 | 1 | 139La | 138La | |
63 | europium | 1 | 1 | 153Eu | 151Eu | |
71 | lutetium | 1 | 1 | 175Lu | 176Lu | |
75 | rhenium | 1 | 1 | 187Re | 185Re | |
9 | fluorine | 1 | — | 19F | ||
11 | sodium | 1 | — | 23Na | ||
13 | aluminium | 1 | — | 27Al | ||
15 | phosphorus | 1 | — | 31P | ||
21 | scandium | 1 | — | 45Sc | ||
25 | manganese | 1 | — | 55Mn | ||
27 | cobalt | 1 | — | 59Co | ||
33 | arsenic | 1 | — | 75As | ||
39 | yttrium | 1 | — | 89Y | ||
41 | niobium | 1 | — | 93Nb | ||
45 | rhodium | 1 | — | 103Rh | ||
53 | iodine | 1 | — | 127I | ||
55 | caesium | 1 | — | 133Cs | ||
59 | praseodymium | 1 | — | 141Pr | ||
65 | terbium | 1 | — | 159Tb | ||
67 | holmium | 1 | — | 165Ho | ||
69 | thulium | 1 | — | 169Tm | ||
79 | gold | 1 | — | 197Au | ||
83 | bismuth | 0 | 1 | 209Bi |
Elements with no primordial isotopes
Z |
Element |
t1⁄2 of[g][1] | Longest lived isotope |
---|---|---|---|
96 | curium | 1.56×107 a | 247Cm |
43 | technetium | 4.2×106 a | 98Tc[a] |
93 | neptunium | 2.144×106 a | 237Np |
91 | protactinium | 32,760 a | 231Pa |
95 | americium | 7,370 a | 243Am |
88 | radium | 1,602 a | 226Ra |
97 | berkelium | 1,380 a | 247Bk |
98 | californium | 898 a | 251Cf |
84 | polonium | 103 a | 209Po |
89 | actinium | 21.77 a | 227Ac |
61 | promethium | 17.7 a | 145Pm[a] |
99 | einsteinium | 1.29 a | 252Es[f] |
100 | fermium | 100.5 d | 257Fm[f] |
101 | mendelevium | 51.5 d | 258Md[f] |
86 | radon | 3.82 d | 222Rn |
105 | dubnium | 1.3 d | 268Db[f] |
Z |
Element |
t1⁄2 of[g][1] | Longest lived isotope |
---|---|---|---|
104 | rutherfordium | 19 h | 265Rf[f] |
103 | lawrencium | 11 h | 266Lr[f] |
85 | astatine | 8.1 h | 210At |
107 | bohrium | 1.5 h[h] | 273Bh[f] |
106 | seaborgium | 1.1 h[h] | 272Sg[f] |
108 | hassium | 1 h[h] | 276Hs[f] |
102 | nobelium | 58 min | 259No[f] |
87 | francium | 22.0 min | 223Fr |
113 | ununtrium | 20 min[h] | 287Uut[f] |
112 | copernicium | 8.9 min | 285mCn[f] |
111 | roentgenium | 10 min[h] | 283Rg[f] |
109 | meitnerium | 6 min[h] | 279Mt[f] |
115 | ununpentium | 1 min[h] | 291Uup[f] |
110 | darmstadtium | 10 s | 278Ds[f] |
114 | flerovium | 2.7 s | 289Fl[f] |
116 | livermorium | 5.3×10−2 s | 293Lv[f] |
117 | ununseptium | 7.8×10−2 s | 294Uus[f] |
118 | ununoctium | 8.9×10−4 s | 294Uuo[f] |
See also
Footnotes
- a See stability of technetium isotopes for a detailed discussion as to why technetium and promethium have no stable isotopes.
- b Isotopes that have a half-life of more than about 108 yr may still be found on Earth, but only those with half-lives above 7×108 yr (as of 235U) are found in appreciable quantities. The present list neglects a few isotopes with half-lives about 108 yr because they have been measured in tiny quantities on Earth. Uranium-234 with its half-life of 246,000 yr and natural isotopic abundance 0.0055% is a special case: it is a decay product of Uranium-238 rather than a primordial nuclide.
- c There are unstable isotopes with extremely long half-lives that are also found on Earth, and some of them are even more abundant than all the stable isotopes of a given element (for example, beta-active 187Re is twice as abundant as stable 185Re). Also, a bigger natural abundance of an isotope just implies that its formation was favored by the stellar nucleosynthesis process that produced the matter now constituting the Earth (and, of course, the rest of the Solar System) (see also Formation and evolution of the Solar System).
- d While bismuth and thorium only have one primordial isotope, uranium has three isotopes that are found in nature (238U, 235U and 234U; the first two are primordial, while 234U is radiogenic). Plutonium-244 is a special case because its half-life (80 Myr) is barely long enough to allow it to still be found in trace quantities on Earth.
- e See many different industrial and medical applications of radioactive elements in Radionuclide, Nuclear medicine, Common beta emitters, Commonly used gamma-emitting isotopes, Fluorine-18, Cobalt-60, Strontium-90, Technetium-99m, Iodine-123, Iodine-124, Promethium-147, Iridium-192 etc.
- f For elements with a higher atomic number than californium (with Z>98), there might exist undiscovered isotopes that are more stable than the known ones.
- g Legend: a=year, d=day, h=hour, min=minute, s=second.
- h These values are not purely derived from experimental data, but at least partly from systematic trends.
References
- 1 2 3 4 5 6 7 8 Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Retrieved 2008-06-06.
- ↑ Dumé, Belle (2003-04-23). "Bismuth breaks half-life record for alpha decay". Institute of Physics Publishing.
- ↑ Pierre de Marcillac, Noël Coron, Gérard Dambier, Jacques Leblanc, Jean-Pierre Moalic (April 2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID 12712201.
- ↑ http://presolar.wustl.edu/work/noblegas.html Novel Gas Research. Accessed April 26, 2009
|