Log-Laplace distribution
In probability theory and statistics, the log-Laplace distribution is the probability distribution of a random variable whose logarithm has a Laplace distribution. If X has a Laplace distribution with parameters μ and b, then Y = eX has a log-Laplace distribution. The distributional properties can be derived from the Laplace distribution.
Characterization
Probability density function
A random variable has a log-Laplace(μ, b) distribution if its probability density function is:[1]
The cumulative distribution function for Y when y > 0, is
Versions of the log-Laplace distribution based on an asymmetric Laplace distribution also exist.[2] Depending on the parameters, including asymmetry, the log-Laplace may or may not have a finite mean and a finite variance.[2]
![\left\{\begin{matrix}
\left\{b x f'(x)+(b-1) f(x)=0,f(1)=\frac{e^{-\frac{\mu }{b}}}{2
b}\right\} & \mbox{if }x < \mu
\\[8pt]
\left\{b x f'(x)+(b+1) f(x)=0,f(1)=\frac{e^{\frac{\mu }{b}}}{2 b}\right\} & \mbox{if }x \geq \mu
\end{matrix}\right.](../I/m/dbf0fa7a9bc4c5bd7bef51efdc475de7.png)
References
- ↑ Lindsey, J.K. (2004). Statistical analysis of stochastic processes in time. Cambridge University Press. p. 33. ISBN 978-0-521-83741-5.
- 1 2 Kozubowski, T.J. & Podgorski, K. "A Log-Laplace Growth Rate Model" (PDF). University of Nevada-Reno. p. 4. Retrieved 2011-10-21.
This article is issued from Wikipedia - version of the Monday, March 28, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
![= \frac{1}{2bx}
\left\{\begin{matrix}
\exp \left( -\frac{\mu-\ln x}{b} \right) & \mbox{if }x < \mu
\\[8pt]
\exp \left( -\frac{\ln x-\mu}{b} \right) & \mbox{if }x \geq \mu
\end{matrix}\right.](../I/m/97f34645438c44cc767081228a6d046c.png)
![F(y) = 0.5\,[1 + \sgn(\ln(y)-\mu)\,(1-\exp(-|\ln(y)-\mu|/b))].](../I/m/b0e4571cf5e2be7e047da2a1f2bd6ba3.png)